10.已知函數(shù)f(x)是定義在區(qū)間[0,+∞)上的增函數(shù),則滿足f(2x-1)<f($\frac{1}{3}$)的x的取值范圍是[$\frac{1}{2},\frac{2}{3}$).

分析 由函數(shù)f(x)是定義在區(qū)間[0,+∞)上的增函數(shù),利用f(2x-1)<f($\frac{1}{3}$),列出不等式駔,能求出結(jié)果.

解答 解:∵函數(shù)f(x)是定義在區(qū)間[0,+∞)上的增函數(shù),
f(2x-1)<f($\frac{1}{3}$),
∴$\left\{\begin{array}{l}{2x-1≥0}\\{2x-1<\frac{1}{3}}\end{array}\right.$,解得$\frac{1}{2}≤x<\frac{2}{3}$.
∴滿足f(2x-1)<f($\frac{1}{3}$)的x的取值范圍是[$\frac{1}{2},\frac{2}{3}$).
故答案為:[$\frac{1}{2}$,$\frac{2}{3}$).

點評 本題考查不等式的解集的求法,是基礎(chǔ)題,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將序號分別為1,2,3,4,5的5張參觀券全部分給3人,每人至少1張至多2張,如果分給同一人的2張參觀券連號,那么不同的分法種數(shù)是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{4+\sqrt{2}i}}{1-i}$,i為虛數(shù)單位,則|z|=(  )
A.9B.3C.$\frac{{3\sqrt{2}}}{2}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的韋恩圖中,全集U=R,若A={x|0≤x<2},B={x|x>1},則陰影部分表示的集合為( 。
A.{x|x>1}B.{x|1<x<2}C.{x|x>2}D.{x|x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某校共有高中、初中、小學(xué)學(xué)生4000名,其中小學(xué)生1600名,初中生人數(shù)是高中生人數(shù)的2倍,現(xiàn)用分層抽樣的方法抽取一個樣本來調(diào)查學(xué)生每天的課外閱讀量.已知樣本中小學(xué)生共有32人,則該樣本中,高中生的人數(shù)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=f(x)的導(dǎo)函數(shù)為f'(x)=cosx-5,且f(0)=0,如果f(1-ax)+f(1-ax2)<0恒成立,則實數(shù)a的取值范圍是(-8,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式|x-3|+|x-2|≥3的解集是(  )
A.{x|x≥3或x≤1}B.{x|x≥4或x≤2}C.{x|x≥2或x≤1}D.{x|x≥4或x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$cos({\frac{π}{2}+α})=2sin({α-\frac{π}{2}})$求$\frac{{sin({π-α})+cos({α+π})}}{{5cos({\frac{5π}{2}-α})+3sin({\frac{7π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在△ABC中,D,E分別為BC,AB的中點,F(xiàn)為AD的中點.
(1)試用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{CE}$,$\overrightarrow{AF}$;
(2)若AB=2,AC=1,∠BAC=60°,求$\overrightarrow{AB}$$•\overrightarrow{AC}$,$\overrightarrow{CE}$$•\overrightarrow{AF}$.

查看答案和解析>>

同步練習冊答案