分析 運用復(fù)合函數(shù)的求導(dǎo)法則,求出函數(shù)y的導(dǎo)數(shù),可得切線的斜率,再由點斜式方程可得切線的方程,化為一般式方程即可得到所求切線的方程.
解答 解:y=$\frac{1}{\sqrt{{x}^{2}-3x}}$的導(dǎo)數(shù)為y′=-$\frac{1}{{x}^{2}-3x}$•$\frac{1}{2}$•$\frac{1}{\sqrt{{x}^{2}-3x}}$•(2x-3)
=($\frac{3}{2}$-x)•$\frac{1}{({x}^{2}-3x)^{\frac{3}{2}}}$,
可得曲線在點(4,$\frac{1}{2}$)處的切線斜率為k=($\frac{3}{2}$-4)•$\frac{1}{(16-12)^{\frac{3}{2}}}$=-$\frac{5}{16}$,
即有曲線y=$\frac{1}{\sqrt{{x}^{2}-3x}}$在點(4,$\frac{1}{2}$)處的切線方程為y-$\frac{1}{2}$=-$\frac{5}{16}$(x-4),
即為5x+16y-28=0.
點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用點斜式方程是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -10 | B. | -2 | C. | 0 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1,2,3} | B. | {0,1,2,3,4} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com