11.已知a,b∈R且0≤a+b≤1,函數(shù)f(x)=x2+ax+b在[-$\frac{1}{2}$,0]上至少存在一個零點,則a-2b的取值范圍為[0,3].

分析 列出滿足條件約束條件,畫出滿足條件的可行域,進而可得答案.

解答 解:由題意,要使函數(shù)f(x)=x2+ax+b在區(qū)間[-$\frac{1}{2}$,0]有零點,
只要$f(-\frac{1}{2})•f(0)≤0$,或$\left\{\begin{array}{l}f(0)=1+b≥0\\ f(-\frac{1}{2})=\frac{1}{4}-\frac{1}{2}a+b≥0\\-\frac{1}{2}<-\frac{a}{2}<0\\△={a}^{2}-4b>0\end{array}\right.$,
其對應(yīng)的平面區(qū)域如下圖所示:


則當(dāng)a=1,b=-1時,a-2b取最大值3,
當(dāng)a=0,b=0時,a-2b取最小值0,
所以a-2b的取值范圍為[0,3];
故答案為:[0,3].

點評 本題考查了函數(shù)零點的分布,線性規(guī)劃,關(guān)鍵是結(jié)合二次函數(shù)圖象等價得到不等式組.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求曲線y=$\frac{1}{\sqrt{{x}^{2}-3x}}$在點(4,$\frac{1}{2}$)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$y=\sqrt{5-{x^2}+4x}$的單調(diào)增區(qū)間是[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在圓x2+y2=9上任取一點P,過點P作x軸的垂線段PD,D為垂足,點M在線段DP上,滿足$\frac{|DM|}{|DP|}$=$\frac{2}{3}$,當(dāng)點P在圓上運動時,設(shè)點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線y=m(x+5)上存在點Q,使過點Q作曲線C的兩條切線互相垂直,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x+a|+|x-2|的定義域為實數(shù)集R.
(Ⅰ)當(dāng)a=5時,解關(guān)于x的不等式f(x)>9;
(Ⅱ)設(shè)關(guān)于x的不等式f(x)≤|x-4|的解集為A,B={x∈R|2x-1|≤3},如果A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=2sin(2x-\frac{π}{6})$B.$f(x)=2sin(x+\frac{π}{6})$C.$f(x)=2sin(2x+\frac{π}{3})$D.$f(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,短軸長為2$\sqrt{3}$,點P為橢圓C上一點,且點P到點F的最遠(yuǎn)距離是最近距離的3倍.
(I)求橢圓C的方程;
(Ⅱ)設(shè)A為橢圓C的左頂點,過點F的直線l交橢圓C于D、E兩點,直線AD、AE與直線x=4分別交于點M、N,試問:在x軸上是否存在定點Q,使得以MN為直徑的圓過點Q?若存在,求出Q點坐標(biāo);若不存在,KH請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計算cos$\frac{π}{12}$sin$\frac{π}{12}$的值為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案