用反證法證明命題:“已知a,b∈N,若a,b能被5整除,則a,b中至少有一個(gè)能被5整除”時(shí),反設(shè)正確的是(  )
A、a,b中有一個(gè)不能被5整除
B、a,b中有一個(gè)能被5整除
C、a,b都不能被5整除
D、a,b都能被5整除
考點(diǎn):反證法與放縮法
專(zhuān)題:證明題,反證法
分析:“a,b中至少有一個(gè)能被5整除”的對(duì)立面是:“a,b都不能被5整除”,得到假設(shè).
解答: 解:反證法證明命題時(shí),應(yīng)假設(shè)命題的反面成立.“a,b中至少有一個(gè)能被5整除”的反面是:
“a,b都不能被5整除”,
故應(yīng)假設(shè) a,b都不能被5整除.
故選:C.
點(diǎn)評(píng):本題考查用反證法證明命題,應(yīng)假設(shè)命題的反面成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,半徑為3的圓中有一封閉曲線(xiàn)圍成的陰影區(qū)域,在圓中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率是
1
3
,則陰影部分的面積是( 。
A、
π
3
B、π
C、2π
D、3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)非零向量的模相等是兩個(gè)向量相等的什么條件( 。
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列結(jié)論中,正確的是(  )
①“x=-2”是“x2+3x+2=0”的充分不必要條件;
②“a>b”是“a2>b2”的充分條件;
③“a≠0”是“ab≠0”的必要不充分條件;
④“a,b是無(wú)理數(shù)”是“a+b是無(wú)理數(shù)”的充要條件.
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=logax在(0,+∞)上是增函數(shù),且當(dāng)0<x≤
1
4
時(shí),axlog
1
2
x,則a的取值范圍是(  )
A、(0,1)
B、(1,2)
C、(1,8)
D、(1,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由直線(xiàn)y=x+1上的一點(diǎn)向圓(x-2)2+(y-1)2=1引切線(xiàn),則切線(xiàn)長(zhǎng)的最小值為( 。
A、
2
-1
B、1
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組向量中,可以作為基底的是( 。
A、(0,0)和(1,-2)
B、(-1,2)和(5,7)
C、(3,5)和(6,10)
D、(2,-3)和(
1
2
,-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)求直線(xiàn)y=
3
與函數(shù)f(x)圖象的所有交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某部門(mén)為了了解用電量y(單位:度)與氣溫x(單位:℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,因某天統(tǒng)計(jì)的用電量數(shù)據(jù)丟失,用t表示,如下表:
氣溫(℃)181310-1
用電量(度)24t3864
(1)由以上數(shù)據(jù),求這4天氣溫的方差.
(2)若用電量與氣溫之間具有較好的線(xiàn)性相關(guān)關(guān)系,回歸直線(xiàn)方程為
y
=-2x+b,且預(yù)測(cè)氣溫為-4℃時(shí),用電量為68度,求t、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案