18.如圖所示,某幾何體的三視圖相同,均為圓周的$\frac{1}{4}$,則該幾何體的表面積為(  )
A.$\frac{3}{4}$πB.$\frac{5}{4}$πC.πD.

分析 根據(jù)三視圖得出可以判斷幾何體是半徑為1的球的$\frac{1}{8}$.運(yùn)用數(shù)據(jù)得出該幾何體的表面積為3×$\frac{1}{4}$×π×12+$\frac{1}{8}$×4×π×12=$\frac{5}{4}$π,

解答 解:∵某幾何體的三視圖相同,均為圓周的$\frac{1}{4}$,
∴可以判斷幾何體是半徑為1的球的$\frac{1}{8}$.

∴該幾何體的表面積為3×$\frac{1}{4}$×π×12+$\frac{1}{8}$×4×π×12=$\frac{5}{4}$π,
故選:B

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.濟(jì)南天下第一泉風(fēng)景區(qū)為了做好宣傳工作,準(zhǔn)備在A和B兩所大學(xué)分別招募8名和12名志愿者,將這20名志愿者的身高編成如右莖葉圖(單位:cm).若身高在175cm以上(包括175cm)定義為“高精靈”,身高在175cm以下 (不包括175cm)定義為“帥精靈”.已知A大學(xué)志愿者的身高的平均數(shù)為176cm,B大學(xué)志愿者的身高的中位數(shù)為168cm.
(Ⅰ)求x,y的值;
(Ⅱ)如果用分層抽樣的方法從“高精靈”和“帥精靈”中抽取5人,再?gòu)倪@5人中選2人.求至少有一人為“高精靈”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知變量x,y滿足的不等式組$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-2≥0}\end{array}\right.$表示的區(qū)域?yàn)镈,B,C為區(qū)域D內(nèi)的任意兩點(diǎn),設(shè)$\overrightarrow{OB}$,$\overrightarrow{OC}$的夾角為θ,則tanθ的最大值是( 。
A.$\frac{4}{3}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知g(x)=x+sinx(x∈R),g(x)的導(dǎo)函數(shù)g′(x),若記g′(x)在求導(dǎo)的結(jié)果為g(2)(x),以此類推,則g(2015)(2015π)=( 。
A.2B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.以x軸正半軸為極軸建立極坐標(biāo)系.已知射線l:θ=$\frac{π}{4}$與曲線C:$\left\{\begin{array}{l}{x=t+1}\\{y=(t-1)^{2}}\end{array}\right.$(t為參數(shù))相交于A,B兩點(diǎn).
(1)寫(xiě)出射線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)求線段AB的中點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)A=(-1,1)、B=(1,2)、C=(-3,2),則向量$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為( 。
A.-$\frac{3}{5}$B.$\frac{3\sqrt{5}}{5}$C.-$\frac{3\sqrt{5}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.為實(shí)施“農(nóng)村留守兒童關(guān)愛(ài)計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成兩幅不完整的統(tǒng)計(jì)圖:

(1)求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)某愛(ài)心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求出所選兩名留守兒童來(lái)自同一個(gè)班級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=xe-x+1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)x,使得f(1-x)=f(x+1)?若存在,求出x的值;否則,說(shuō)明理由;
(3)若存在不等實(shí)數(shù)x1、x2,使得f(x1)=f(x2),證明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.從點(diǎn)P出發(fā)的三條射線PA,PB,PC兩兩成60°角,且分別與球O相切于A,B,C三點(diǎn),若OP=$\sqrt{3}$,則球的體積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案