1.等腰直角三角形ABC中,AB=BC=2,將斜邊AC繞直角邊AB旋轉(zhuǎn)90°后得到旋轉(zhuǎn)體A-BCD,如圖所示,求:
(1)若E是CD的中點(diǎn),求直線AE與面BCD所成的角;
(2)求異面直線AC和BD所成的角;(3)求旋轉(zhuǎn)體A-BCD的體積V1和三棱錐A-BCD的體積V2之比.

分析 (1)連結(jié)BE,則∠AEB為直線AE與面BCD所成的角.
(2)由BD⊥BC,BD⊥AB可推出BD⊥平面ABC,故BD⊥AC.
(3)分別求出兩個幾何體的體積.

解答 解:(1)連結(jié)BE,∵AB⊥BC,AB⊥BD,BC∩BD=B,BC?平面BCD,BD?平面BCD,
∴AB⊥平面BCD,∴∠AEB為直線AE與面BCD所成的角.
∵∠DBC=90°,∴CD=$\sqrt{2}$BC=2$\sqrt{2}$,∴BE=$\frac{1}{2}CD$=$\sqrt{2}$.∴tan∠AEB=$\frac{AB}{BE}$=$\sqrt{2}$.∴∠AEB=arctan$\sqrt{2}$.
(2)∵BD⊥BC,BD⊥AB,BC∩AB=B,BC?平面ABC,AB?平面ABC,
∴BD⊥平面ABC,∵AC?平面ABC,
∴BD⊥AC.∴異面直線AC和BD所成的角為90°.
(3)V1=$\frac{1}{3}$S扇形BCD•AB=$\frac{1}{3}×\frac{1}{4}×π×{2}^{2}×2$=$\frac{2π}{3}$.V2=$\frac{1}{3}$S△BCD•AB=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
∴$\frac{{V}_{1}}{{V}_{2}}$=$\frac{π}{2}$.

點(diǎn)評 本題考查了線面垂直的判定與性質(zhì),線面角,體積計算,正確找到線面角解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+3cosθ}\\{y=3sinθ-2}\end{array}}\right.(θ為參數(shù))$,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ+2ρcosθ=3,求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+2)=f(x),當(dāng)-1≤x<1時,f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|恰有6個不同零點(diǎn),則a的取值范圍是(  )
A.($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7]B.($\frac{1}{5}$,$\frac{1}{3}$]∪(5,7]C.($\frac{1}{5}$,$\frac{1}{3}$]∪(3,5]D.($\frac{1}{7}$,$\frac{1}{5}$]∪(3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將一個數(shù)列中部分項按原來的先后次序排列所成的一個新數(shù)列稱為原數(shù)列的一個子數(shù)列.如果數(shù)列存在成等比數(shù)列的子數(shù)列,那么稱該數(shù)列為“弱等比數(shù)列”.已知m>1,設(shè)區(qū)間(m,+∞)內(nèi)的三個正整數(shù)a,x,y滿足:數(shù)列a2,$\sqrt{{y}^{2}-1}$,cos$\frac{π}{2}$,x2-1為“弱等比數(shù)列”,則$\frac{a}{x}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知${f_0}(x)=x{e^x},{f_1}(x)={f'_0}(x),{f_2}(x)={f'_1}(x),…,{f_n}(x)={f'_{n-1}}(x)(n∈{N^+})$.
(Ⅰ)請寫出fn(x)的表達(dá)式(不需證明);
(Ⅱ)設(shè)fn(x)的極小值點(diǎn)為Pn(xn,yn),求yn;
(Ⅲ)設(shè)${g_n}(x)=-{x^2}-2(n+1)x-8n+8$,gn(x)的最大值為a,fn(x)的最小值為b,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足a1=1,a2=2,an+2=(2+cosnπ)(an-1)+3,n∈N*.那么數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{n,n為奇數(shù)}\\{2×{3}^{\frac{n-2}{2}},n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知m>n>0,x是m、n的等差中項,y是m、n的等比中項,則x,y的大小關(guān)系是( 。
A.x>yB.x=y
C.x<yD.大小不確定,與m、n的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的最小正周期是π.若將f(x)的圖象先向右平移$\frac{π}{6}$個單位,再向上平移$\sqrt{3}$個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對任意x∈[0,$\frac{π}{3}$],f(x)+m≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,ABCD是長方形硬紙片,AB=80cm,AD=50cm,在硬紙片的四角切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙箱,設(shè)切去的小正方形的白邊長為x(cm).
(1)若要求紙箱的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若要求紙箱的容積V(cm3)最大,試問x應(yīng)取何值?

查看答案和解析>>

同步練習(xí)冊答案