已知雙曲線C過點(diǎn)(2,3),它的一條漸近線是y=
2
x,求雙曲線C的方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,雙曲線的一條漸近線方程為y=
2
x,可設(shè)雙曲線方程為y2-2x2=λ(λ≠0),又由雙曲線過點(diǎn)P(2,3),將點(diǎn)P的坐標(biāo)代入可得λ的值,進(jìn)而可得答案.
解答: 解:根據(jù)題意,雙曲線的一條漸近線方程為y=
2
x,
設(shè)雙曲線方程為y2-2x2=λ(λ≠0),
∵雙曲線過點(diǎn)P(2,3),
∴9-8=λ,即λ=1.
∴所求雙曲線方程為y2-2x2=1.
點(diǎn)評:本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,需要學(xué)生熟練掌握已知漸近線方程時,如何設(shè)出雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
x-1

(1)用函數(shù)單調(diào)性證明函數(shù)y=
2
x-1
在(1,+∞)上是減函數(shù);
(2)求函數(shù)y=
2
x-1
在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,設(shè)命題p:方程
x2
m
+
y2
3-m
=1表示焦點(diǎn)在x軸上的雙曲線.命題q:?x∈R,x2+2mx+
9
4
<0.若p∨q為真命題,p∧q為假命題.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求三棱錐H-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x1和x2是方程x2-mx-2=0的兩個實(shí)根,不等式a2-5a-3≥|x1-x2|對任意實(shí)數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解,若p∨q為真命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=2x-3
(1)證明:f(x)>g(x);
(2)證明:(1+1×2)(1+2×3)…(1+2014×2015)>e2×2014-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2(x∈R),g(x)滿足g′(x)=
a
x
(a∈R,x>0),且g(e)=a,e為自然對數(shù)的底數(shù).
(Ⅰ)已知h(x)=e1-xf(x),求h(x)在(1,h(1))處的切線方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥-x2+(a+2)x成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定.若M(x,y)為D上的動點(diǎn),點(diǎn)A的坐標(biāo)為(
2
,1).
(1)求z=
OM
OA
的最大值;
(2)求w=
y-3
x-2
2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
6
)+sin2x,(x∈R)
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案