19.已知關(guān)于x的一元二次方程x2+ax+1=0,分別求滿(mǎn)足下列條件下的實(shí)數(shù)a的取值范圍.
(1)兩根均大于-1;
(2)一個(gè)根大于-1,另一個(gè)根小于-1;
(3)兩個(gè)根均在(-1,2)內(nèi).

分析 由二次函數(shù)的性質(zhì),結(jié)合二次函數(shù)的圖象,依次對(duì)其分析.

解答 解:令f(x)=x2+ax+1,則
(1)兩根均大于-1,等價(jià)于$\left\{\begin{array}{l}{△={a}^{2}-4≥0}\\{-\frac{a}{2}>-1}\\{f(-1)>0}\end{array}\right.$,∴a<-2;
(2)一個(gè)根大于-1,另一個(gè)根小于-1,等價(jià)于f(-1)<0,即1-a+1<0,∴a>2;
(3)兩個(gè)根均在(-1,2)內(nèi),等價(jià)于$\left\{\begin{array}{l}{△={a}^{2}-4≥0}\\{-1<-\frac{a}{2}<2}\\{f(-1)>0}\\{f(2)>0}\end{array}\right.$,∴-2.5<a<-2.

點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象特征及二次函數(shù)與二次方程之間的聯(lián)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x2-(a+1)x+a.
(1)試求不等式f(x)<0的解集;
(2)若函數(shù)f(x)=x2-(a+1)x+a的圖象在直線(xiàn)ax-y-2=0的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足2bcos($\frac{π}{3}$-C)=a+c
(1)求角B的大;
(2)若D點(diǎn)為BC中點(diǎn),且AD=AC=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.$\frac{1}{0!n!}$+$\frac{1}{1!(n-1)!}$+$\frac{1}{2!(n-2)!}$+…+$\frac{1}{n!0!}$=$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合P={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},Q={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},則( 。
A.P=QB.P?QC.P?QD.P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\sqrt{3}$sinx+3cosx=$\frac{3\sqrt{3}}{2}$,則tan($\frac{7π}{6}$-x)等于( 。
A.±$\frac{\sqrt{7}}{3}$B.$±\frac{3}{4}$C.±$\frac{\sqrt{7}}{4}$D.$±\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的導(dǎo)函數(shù)為f′(x).
(Ⅰ)若函數(shù)g(x)=f′(x)+(2a-1)x只有一個(gè)零點(diǎn),求a的值;
(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,($\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],則求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值為( 。
A.3B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)y=x2-4x+1的圖象與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,則(  )
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

同步練習(xí)冊(cè)答案