12.已知i是虛數(shù)單位,復(fù)數(shù)Z=$\frac{4+2i}{1-i}$,則復(fù)數(shù) $\overline Z$的虛部是( 。
A.-3B.3C.-3iD.3i

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出$\overline{Z}$得答案.

解答 解:∵Z=$\frac{4+2i}{1-i}$=$\frac{(4+2i)(1+i)}{(1-i)(1+i)}=\frac{2+6i}{2}=1+3i$,
∴$\overline{Z}=1-3i$,
則復(fù)數(shù) $\overline Z$的虛部是-3.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列函數(shù)的導(dǎo)數(shù):
(1)y=exlnx;                                
(2)y=$\frac{1+cosx}{sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=log${\;}_{\frac{1}{3}}}$2,c=log23,則( 。
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)A(3,4),B(-2,-1).若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍是(  )
A.[$\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]∪[3,+∞)C.(-∞,0]∪[$\frac{1}{2}$,3)D.[$\frac{1}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),當(dāng)x∈[0,3]時(shí),f(x)=log2(x+1).設(shè)函數(shù)g(x)=x2-2x+m,x∈[-3,3].如果對(duì)于?x1∈[-3,3],?x2∈[-3,3],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍為(  )
A.[-13,-1]B.(-∞,-1]C.[-13,+∞)D.[1,13]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.前不久商丘市因環(huán)境污染嚴(yán)重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù).
x3456
y2.5344.5
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅱ)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.現(xiàn)對(duì)一個(gè)生產(chǎn)茶杯的工廠的日產(chǎn)量進(jìn)行統(tǒng)計(jì),下面是50天的統(tǒng)計(jì)結(jié)果(單位:個(gè))
日產(chǎn)量222527
頻數(shù)1035a
(1)根據(jù)上表的數(shù)據(jù),求一天的產(chǎn)量分別為22個(gè),25個(gè)和27個(gè)的頻率;
(2)假設(shè)工廠各天的茶杯產(chǎn)量相互獨(dú)立,每個(gè)茶杯的成本為10元,且每天生產(chǎn)的茶杯均能以每個(gè)20元銷售完.若以上述頻率作為概率,ξ表示該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和(單位:元),求ξ的分布列;
(3)若該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和的期望值超過(guò)480元,則可被評(píng)為先進(jìn)單位.請(qǐng)估計(jì)該工廠能否被評(píng)為先進(jìn)單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.曲線$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1與曲線$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16-k}$=1 (k<16)有相同的(  )
A.頂點(diǎn)B.長(zhǎng)軸長(zhǎng)C.離心率D.焦點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案