8.已知函數(shù)f(x)=sinx-cosx,把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的對(duì)稱軸方程為x=2kπ+$\frac{11π}{6}$,k∈Z.

分析 根據(jù)圖象平移法則,寫出函數(shù)f(x)平移后的圖象對(duì)應(yīng)函數(shù)g(x)的解析式,
求出函數(shù)g(x)的對(duì)稱軸方程即可.

解答 解:把函數(shù)f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)的圖象上
每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,得y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)的圖象,
再向右平移$\frac{π}{3}$個(gè)單位,得到函數(shù)
g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x-$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{5π}{12}$)的圖象,
令$\frac{1}{2}$x-$\frac{5π}{12}$=kπ+$\frac{π}{2}$,求得x=2kπ+$\frac{11π}{6}$,k∈Z,
∴函數(shù)g(x)的對(duì)稱軸方程為x=2kπ+$\frac{11π}{6}$,k∈Z.
故答案為:x=2kπ+$\frac{11π}{6}$,k∈Z.

點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律以及正弦函數(shù)圖象的對(duì)稱性問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,三邊長(zhǎng)分別為7,$4\sqrt{3}$,$\sqrt{13}$,則三角形最小角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.圓心在直線2x-y=0上的圓C與x軸的正半軸相切,圓C截y軸所得的弦的長(zhǎng)為2$\sqrt{3}$,則圓C的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{x}$|x-a|,a∈R,g(x)=16x3+mx2-15x-2,且g(2)=0.
(Ⅰ)求函數(shù)g(x)的極值;
(Ⅱ)若函數(shù)f(x)單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)a>0,若存在實(shí)數(shù)t(t>a),當(dāng)x∈[0,t]時(shí)函數(shù)f(x)的值域?yàn)閇0,$\frac{t}{2}$],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.兩個(gè)袋中各裝有編號(hào)為1,2,3,4,5的5個(gè)小球,分別從每個(gè)袋中摸出一個(gè)小球,所得兩球編號(hào)數(shù)之和小于5的概率為( 。
A.$\frac{1}{5}$B.$\frac{7}{25}$C.$\frac{6}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=ax3-3x2+1(a>0),定義h(x)=max{f(x),g(x)}=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}\right.$
(1)求函數(shù)f(x)的極值;
(2)若g(x)=xf′(x),且存在x∈[1,2]使h(x)=f(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)是定義在R上的偶函數(shù),g(x)是定義在R上的奇函數(shù),則下列敘述正確的是( 。
A.f(x)+g(x)為偶函數(shù)B.f(x)g(x)為奇函數(shù)C.xf(x)-xg(x)為偶函數(shù)D.f(|x|)+xg(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{6-m}$=1表示焦點(diǎn)在x軸上的橢圓;命題q:雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).若命題“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某商品在近30天內(nèi)每件的銷售價(jià)格p(元)與時(shí)間t(天)的函數(shù)關(guān)系是$p=\left\{\begin{array}{l}t+20,0<t<25,t∈N\\-t+100,25≤t≤30,t∈N\end{array}\right.$,該商品的日銷售量Q(件)與時(shí)間t(天)的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天的第幾天?

查看答案和解析>>

同步練習(xí)冊(cè)答案