在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面ADPQ,AB=AQ=
1
2
DP.
(1)求證:PQ⊥平面DCQ;
(2)求平面BCQ與平面ADPQ所成的銳二面角的大。
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線(xiàn)與平面垂直的判定
專(zhuān)題:空間角
分析:(1)以D為原點(diǎn),DA、DP、DC所在直線(xiàn)分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,利用向量法能證明PQ⊥平面DCQ.
(2)分別求出平面ADPQ的一個(gè)法向量和平面BCQ的一個(gè)法向量,由此利用向量法能求出平面BCQ與平面ADPQ所成的銳二面角的大。
解答: (1)證明:由已知,DA,DP,DC兩兩垂直,
以D為原點(diǎn),DA、DP、DC所在直線(xiàn)分別為x軸、y軸、z軸建立空間直角坐標(biāo)系.…(1分)
設(shè)A=a,則D(0,0,0),C(0,0,a),Q(a,a,0),P(0,2a,0),
DC
=(0,0,a),
DQ
=(a,a,0),
PQ
=(a,-a,0),…(3分)
DC
PQ
=0,
DQ
PQ
=0,
∴DC⊥PQ,DQ⊥PQ,…(5分)
∴PQ⊥平面DCQ.…(6分)
(2)解:∵DC⊥平面ADPQ,
DC
=(0,0,a),
∴平面ADPQ的一個(gè)法向量為
n
=(0,0,1)
,…(1分)
點(diǎn)B的坐標(biāo)為(a,0,a),則
QB
=(0,-a,a),
QC
=(-a,-a,a)
,…(2分)
設(shè)平面BCQ的一個(gè)法向量為
m
=(x,y,z),則
m
QB
=0
m
QC
=0,
-ay+az=0
-ax-ay+az=0
,取y=z=1,得
m
=(0,1,1),…(5分)                              …(5分)
設(shè)平面BCQ與平面ADPQ所成的銳二面角為θ,
則cosθ=|cos<
m
,
n
>|=|
1
2
|=
2
2
.  …(7分)
∴平面BCQ與平面ADPQ所成的銳二面角的大小為
π
4
.…(8分)
點(diǎn)評(píng):本題考查直線(xiàn)與平面垂直的證明,考查二面角的大小的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l的斜率與直線(xiàn)3x-2y=6的斜率相等,且直線(xiàn)l在x軸上的截距比在y軸上的截距大1,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高考理科總分得640就能上北京大學(xué),已知一名理科學(xué)生的語(yǔ)文、英語(yǔ)、理綜合得分分別為135分,125分,260分.?dāng)?shù)學(xué)試卷中12個(gè)選擇題每題5分,且每題答對(duì)的概率都是0.9,4個(gè)填空題每題4分且每題答對(duì)的概率都是0.8,6個(gè)大題前五個(gè)每題12分,最后一題14分,前兩個(gè)大題估計(jì)能得滿(mǎn)分,最后一個(gè)大題估計(jì)能得2分.已知第三、四、五個(gè)大題每題答對(duì)的概率都相等,且至少答對(duì)一題的概率為0.992.
(1)求這名理科學(xué)生數(shù)學(xué)試卷得分的期望;
(2)這名學(xué)生能否考上北京大學(xué)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使得|f(x)|≥M|x|對(duì)一切實(shí)數(shù)x均成立,則稱(chēng)f(x)為“圓錐托底型”函數(shù).
(1)判斷函數(shù)f(x)=2x,g(x)=x3是否為“圓錐托底型”函數(shù)?并說(shuō)明理由.
(2)若f(x)=x2+1是“圓錐托底型”函數(shù),求出M的最大值.
(3)問(wèn)實(shí)數(shù)k、b滿(mǎn)足什么條件,f(x)=kx+b是“圓錐托底型”函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,若S17為一確定常數(shù),則當(dāng)n為何值時(shí),可以使4a2-3a9+an也為確定常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱(chēng)出它們的重量(單位:克),重量分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖,如圖.
(1)求a的值;
(2)根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的平均值;
(注:設(shè)樣本數(shù)據(jù)第i組的頻率為pi,第i組區(qū)間的中點(diǎn)值為xi(i=1,2,3,…,n),則樣本數(shù)據(jù)的平均值為
.
X
=x1p1+x2p2+x3p3+…+xnpn.)
(3)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在(5,15]內(nèi)的小球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目投資十萬(wàn)元,一年可進(jìn)行四次獨(dú)立重復(fù)的投資(即甲項(xiàng)目的投資周期為3個(gè)月)每次成功的概率均為
1
4
,若成功一次,可得利潤(rùn)1萬(wàn)元,若失敗,則利潤(rùn)為0,投資要么成功,要么失。阎翼(xiàng)目的利潤(rùn)與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是p(0<p<1),記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行兩次獨(dú)立的調(diào)整,設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為ξ,對(duì)乙項(xiàng)目每投資十萬(wàn)元,ξ取0、1、2時(shí),一年后相應(yīng)利潤(rùn)是1.4萬(wàn)元、1.1萬(wàn)元、0.4萬(wàn)元,隨機(jī)變量ξ1、ξ2分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬(wàn)元一年后的利潤(rùn).
(Ⅰ)求ξ1、ξ2的概率分布列和數(shù)學(xué)期望E(ξ1)、E(ξ2);
(Ⅱ)當(dāng)E(ξ1)<E(ξ2)時(shí),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8個(gè)球隊(duì)中有甲、乙、丙3個(gè)強(qiáng)隊(duì).任意將這8個(gè)隊(duì)分成A、B兩組(每組4個(gè)隊(duì))進(jìn)行比賽.
(1)共有多少種分法?
(2)求至少有兩個(gè)強(qiáng)隊(duì)分在A組中的概率;
(3)求甲、乙兩隊(duì)不分在同一組的概率;
(4)設(shè)強(qiáng)隊(duì)分在同一組的隊(duì)數(shù)為ξ,求ξ的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

離心率為
5
5
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線(xiàn)x=ky+1與C交于相異兩點(diǎn)M、N,且
OM
ON
=-
31
9
(O是坐標(biāo)原點(diǎn)),求k.

查看答案和解析>>

同步練習(xí)冊(cè)答案