偶函數(shù)y=f(x)(x∈R),滿足f(-4)=f(-1)=0,且在區(qū)間[0,3]上單調(diào)遞減,在區(qū)間[3,+∞)上單調(diào)遞增,則不等式-xf(x)>0的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:不等式-xf(x)>0等價于
x>0
f(x)<0
x<0
f(x)>0
,旅游偶函數(shù)y=f(x)(x∈R),滿足f(-4)=f(-1)=0,且在區(qū)間[0,3]上單調(diào)遞減,在區(qū)間[3,+∞)上單調(diào)遞增,可得結(jié)論.
解答: 解:不等式-xf(x)>0等價于
x>0
f(x)<0
x<0
f(x)>0

∵偶函數(shù)y=f(x)(x∈R),滿足f(-4)=f(-1)=0,且在區(qū)間[0,3]上單調(diào)遞減,在區(qū)間[3,+∞)上單調(diào)遞增,
x>0
1<x<4
x<0
x<-4或-1<x<0

∴不等式-xf(x)>0的解集為(-∞,-4)∪(-1,0)∪(1,4).
故答案為:(-∞,-4)∪(-1,0)∪(1,4).
點(diǎn)評:本題考查奇偶性與單調(diào)性的綜合,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且acosC=(2b-c)cosA.
(Ⅰ)求角A的大。
(Ⅱ)已知a=
3
,D點(diǎn)為邊BC的中點(diǎn),試求AD的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
6
)(ω>0)相鄰兩個對稱軸之間的距離是號,且滿足,f(
π
4
)=
3

(I)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在鈍角△ABC中,a、b、c分別為角A、B、C的對邊,sinB=
3
sinC,a=2,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1
ax-1
(a>1)
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)求a=2,x∈[1,2]時,求f(x)的值域;
(Ⅲ)解不等式f(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于圓錐曲線,給出以下結(jié)論:
①設(shè)A、B為兩個定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
OA
+
OB
),則動點(diǎn)P的軌跡為圓;
③方程4x2-12x+5=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
16
-
y2
9
=1與橢圓
x2
35
+
y2
10
=1有相同的焦點(diǎn).
⑤橢圓C:
x2
2
+y2=1上滿足
MF1
MF2
=0的點(diǎn)M有4個(其中F1,F(xiàn)2為橢圓C的焦點(diǎn)).
其中正確結(jié)論的序號為
 
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x   x≤0
log2x  x>0
,且函數(shù)g(x)=f(x)+x一a只有一個零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲,乙,丙,丁4個人中隨機(jī)選取兩人,則甲乙兩人中有且只一個被選取的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則滿足不等式|log3x-i|≤
10
的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(0,π),且3cos2α=sin(
π
4
-α),則sin2α的值為
 

查看答案和解析>>

同步練習(xí)冊答案