A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
分析 建立坐標(biāo)系,設(shè)點(diǎn)P的坐標(biāo),可得P關(guān)于直線BC的對稱點(diǎn)P1的坐標(biāo),和P關(guān)于y軸的對稱點(diǎn)P2的坐標(biāo),由P1,Q,R,P2四點(diǎn)共線可得直線的方程,由于過△ABC的重心,代入可得關(guān)于a的方程,解之可得P的坐標(biāo),進(jìn)而可得AP,BP的值.
解答 解:建立如圖所示的坐標(biāo)系:
可得B(4,0),C(0,4),故直線BC的方程為x+y=4,
△ABC的重心為($\frac{4}{3}$,$\frac{4}{3}$),設(shè)P(a,0),其中0<a<4,
則點(diǎn)P關(guān)于直線BC的對稱點(diǎn)P1(x,y),滿足$\left\{\begin{array}{l}{\frac{a+x}{2}+\frac{y}{2}=4}\\{\frac{y}{x-a}•(-1)=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=4}\\{y=4-a}\end{array}\right.$,即P1(4,4-a),
易得P關(guān)于y軸的對稱點(diǎn)P2(-a,0),
由光的反射原理可知P1,Q,R,P2四點(diǎn)共線,
直線QR的斜率為k=$\frac{4-a}{4+a}$,故直線QR的方程為y=$\frac{4-a}{4+a}$(x+a),
由于直線QR過△ABC的重心($\frac{4}{3}$,$\frac{4}{3}$),代入化簡可得3a2-4a=0,
解得a=$\frac{4}{3}$,或a=0(舍去),故P($\frac{4}{3}$,0),故AP=$\frac{4}{3}$,BP=$\frac{8}{3}$
故選C.
點(diǎn)評 本題考查直線與點(diǎn)的對稱問題,涉及直線方程的求解以及光的反射原理的應(yīng)用,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{|{BF}|-1}}{{|{AF}|-1}}$ | B. | $\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$ | C. | $\frac{{|{BF}|+1}}{{|{AF}|+1}}$ | D. | $\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1的否命題為:“若x2=1,則x≠1” | |
B. | “m=1”是“直線x-my=0和直線x+my=0互相垂直”的充要條件 | |
C. | 命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
D. | 命題“已知A,B為一個(gè)三角形兩內(nèi)角,若A=B,則sinA=sinB”的否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{{\sqrt{3}π}}{24}$ | D. | $1-\frac{{\sqrt{3}π}}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(|x+1|)=x2+2x | B. | f(cos2x)=cosx | C. | f(sinx)=cos2x | D. | f(cosx)=cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3m3 | B. | 6m3 | C. | 12m3 | D. | 15m3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com