【題目】已知a>0,設命題p:函數(shù)f(x)=x2﹣2ax+1﹣2a在區(qū)間[0,1]上與x軸有兩個不同的交點;命題q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命題,求實數(shù)a的取值范圍.
【答案】解:若p真,則 ,即
∴ <a≤ .
若q真,g(x)=|x﹣a|﹣ax= ,
∵a>0,
∴﹣(1+a)<0,
即g(x)在(﹣∞,a)單調(diào)遞減的,要使g(x)有最小值,則g(x)在[a,+∞)增或為常數(shù),
即1﹣a≥0,
∴0<a≤1,
若(¬p)∧q是真命題,則p為假命題且q為真命題,
∴
解得:a∈(0, ]∪( ,1]
【解析】由(¬p)∧q是真命題,得:p假且q真;分別求出命題p,q為真假是參數(shù)a的范圍,可得答案.
【考點精析】本題主要考查了命題的真假判斷與應用的相關(guān)知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:ACBC=ADAE;
(2)過點C作⊙O的切線交BA的延長線于點F,若AF=4,CF=6,求AC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實數(shù)a的取值范圍是( )
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為16分)為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:
,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求出該班學生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績低于80分的學生中隨機抽取2人,規(guī)定抽到的學生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設抽取2人的總績點分為ξ,求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實數(shù)a,m的值.
(2)當a=2且0≤t<2時,解關(guān)于x的不等式f(x)+t≥f(x+2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當x∈[0, ]時,f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com