A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合目標(biāo)函數(shù)z=x+y的最大值是最小值的3倍,建立方程關(guān)系,即可得到結(jié)論.
解答 解:作出不等式組$\left\{\begin{array}{l}{y≥2x}\\{2x+y≤4}\\{x≥m}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時(shí),直線的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{2x+y=4}\\{x=m}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=m}\\{y=4-2m}\end{array}\right.$即A(m,4-2m),
此時(shí)z=m+4-2m=4-m,
當(dāng)直線y=-x+z經(jīng)過點(diǎn)B時(shí),直線的截距最小,
此時(shí)z最小,
由$\left\{\begin{array}{l}{x=m}\\{y=2x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=m}\\{y=2m}\end{array}\right.$,
即B(m,2m),此時(shí)z=3m,
∵目標(biāo)函數(shù)z=x+y的最大值是最小值的3倍,
∴4-m=9m,
即m=$\frac{2}{5}$.
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①是系統(tǒng)抽樣,②是簡單隨機(jī)抽樣 | |
B. | ①是簡單隨機(jī)抽樣,②是簡單隨機(jī)抽樣 | |
C. | ①是簡單隨機(jī)抽樣,②是系統(tǒng)抽樣 | |
D. | ①是系統(tǒng)抽樣,②是系統(tǒng)抽樣 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}+\frac{1}{3}$ | B. | $\frac{π}{2}-\frac{1}{3}$ | C. | $\frac{π}{4}+\frac{1}{3}$ | D. | $\frac{π}{4}-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 6 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∨q為真命題,則p∧q為真命題 | |
B. | “a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分必要條件 | |
C. | 命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0” | |
D. | 命題p:?x0∈R,使得x02+x0-1<0,則¬p:?x∈R,使得x2+x-1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{(n+1)^{2}}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{2}{{2}^{n}-1}$ | D. | $\frac{2}{2n-1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com