A. | $\frac{1}{2}$ | B. | 2 | C. | $-\frac{1}{2}$ | D. | -2 |
分析 根據(jù)同角三角函數(shù)關(guān)系式即可求解.
解答 解:由$\frac{sinx+1}{cosx}=\frac{1}{2}$,可得:sinx=$\frac{1}{2}cosx$-1,(cosx≠0)
sin2x+cos2x=1,
∴($\frac{1}{2}cosx$-1)2+cos2x=1,
得:$\frac{5}{4}$cos2x-cosx=0,
解得:cosx=$\frac{4}{5}$.
那么:$\frac{sinx-1}{cosx}=\frac{sin+1-2}{cosx}=\frac{1}{2}-\frac{2}{cosx}$=-2.
故選D
點評 本題主要考察了同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 60 | C. | 80 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | C. | $-\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=sin(8x-\frac{π}{4})$ | B. | $f(x)=sin(8x+\frac{π}{4})$ | C. | $f(x)=sin(\frac{x}{2}-\frac{π}{4})$ | D. | $f(x)=sin(\frac{x}{2}+\frac{π}{4})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com