2.設(shè)數(shù)列{an}的前n項和Sn=$\frac{3}{2}$n2-$\frac{n}{2}$(n∈N*),求數(shù)列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前n項和Tn

分析 利用遞推關(guān)系可得an,利用“裂項求和”即可得出.

解答 解:∵Sn=$\frac{3}{2}$n2-$\frac{n}{2}$(n∈N*),
∴當(dāng)n=1時,a1=$\frac{3}{2}-\frac{1}{2}$=1;
當(dāng)n≥2時,an=Sn-Sn-1=$\frac{3}{2}$n2-$\frac{n}{2}$-$[\frac{3}{2}(n-1)^{2}-\frac{n-1}{2}]$=3n-2,
當(dāng)n=1時也成立,
∴an=3n-2.
∴$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{3n-2}+\sqrt{3n+1}}$=$\frac{1}{3}(\sqrt{3n+1}-\sqrt{3n-2})$.
∴數(shù)列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前n項和Tn=$\frac{1}{3}[(\sqrt{4}-\sqrt{1})+(\sqrt{7}-\sqrt{4})$+…+$(\sqrt{3n+1}-\sqrt{3n-2})]$
=$\frac{1}{3}$$(\sqrt{3n+1}-1)$.

點評 本題考查了遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{{x}^{2}+(a-b-2)x+1}{{x}^{2}+2}$是[b-1,a]上的偶函數(shù),求f(a-b)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m>1,在約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目標(biāo)函數(shù)z=x+my的最大值為$\frac{5}{2}$.則m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的值域:
(1)y=$\sqrt{x+2}$-$\sqrt{1-x}$;
(2)y=2x+$\sqrt{1-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(m-1)•x${\;}^{{m}^{2}-2m-4}$為冪函數(shù).
(1)求y=f(x)的解析式;
(2)求函數(shù)g(x)=$\sqrt{f(x)}$$-\frac{1}{xf(x)}$的定義域,并指明g(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{a}$-$\frac{1}{x}$(a>0,x>0).求證:f(x)在區(qū)間(0,+∞)內(nèi)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=x${\;}^{-\frac{1}{2}}$,若f(x+2)>f(1-2x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解關(guān)于x的不等式:(x-a)•(x-2a-1)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A={x|x2=9},請用列舉法表示集合A.

查看答案和解析>>

同步練習(xí)冊答案