已知數(shù)列{an}中,a1=1,anan+1=(
1
2
n,求an通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由a1=1,anan+1=(
1
2
n,令n=1,求得a2的值,anan+1=(
1
2
n,得anan-1=(
1
2
n-1,兩式相比,即得
an+1
an-1
=
1
2
,從而求得數(shù)列{an}的奇數(shù)項(xiàng)成等比數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,運(yùn)用等比數(shù)列的通項(xiàng)公式即可得到數(shù)列{an}通項(xiàng).
解答: 解:∵anan+1=(
1
2
n,令n=1,則a2=
1
2
,
∴當(dāng)n>1時,anan-1=(
1
2
n-1,
兩式相比,∴
an+1
an-1
=
1
2
,
∴數(shù)列{an}的奇數(shù)項(xiàng)成等比數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,
則有an=
(
1
2
)
n-1
2
,n為奇數(shù)
(
1
2
)
n
2
,n為偶數(shù)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的通項(xiàng)公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cos2x,
3
),
b
=(1,sin2x),函數(shù)f(x)=
a
b
,g(x)=
b
2

(Ⅰ)求函數(shù)g(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)增區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x-1)的定義域是[
3
2
,9],則函數(shù)
f(2x)
log2(x-1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n+1
25
24
(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-|2x-1|,x∈[0,1].定義:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=2,3,4,…滿足fn(x)=x的點(diǎn)x∈[0,1]稱為f(x)的n階不動點(diǎn).則f(x)的n階不動點(diǎn)的個數(shù)是( 。
A、2n個
B、2n2
C、2(2n-1)個
D、2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足:①f(x)=2f(x-1)+1;②當(dāng)-1<x≤0,f(x)=x2-ax-a,其中常數(shù)a>0
(1)若a=1,求f(
1
2
),f(1)的值;
(2)當(dāng)0<x<1時,求f(x)的解析式;
(3)討論函數(shù)f(x)在(-1,1)上的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=log2x-x+2的零點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)的左右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1F2為直徑的圓交雙曲線某條漸近線于M、N兩點(diǎn),且滿足∠MAN=120°,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},其前n項(xiàng)和Sn=-3n2,{bn}為單調(diào)遞增的等比數(shù)列,b1b2b3=512,a1+b1=a3+b3
(1)求數(shù)列{an},{bn}的通項(xiàng);
(2)若cn=
bn
(bn-2)(bn-1)
,數(shù)列{cn}的前n項(xiàng)和Tn,求證:
2
3
Tn
<1.

查看答案和解析>>

同步練習(xí)冊答案