14.已知x,y的取值如表所示,若y與x線性相關,且$\hat y$=0.5x+a,則a=(  )
x0134
y2.24.34.86.7
A.3.5B.2.2C.4.8D.3.2

分析 由圖表求得$\overline{x}$=2,$\overline{y}$=4.5,代入回歸直線方程得答案.

解答 解:由圖表知,$\overline{x}$=2,$\overline{y}$=4.5,
代入$\hat y$=0.5x+a,得.5=0.5×2+a,解得a=3.5.
故選:A.

點評 本題考查線性回歸方程,關鍵是明確線性回歸直線恒過樣本中心點,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,如圖是根據(jù)調查結果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,則圖中x的值為( 。
A.0.01B.0.02C.0.03D.0.04

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)f(x)=logax,則f(a+1)與f(2)的大小關系是( 。
A.f(a+1)>f(2)B.f(a+1)<f(2)C.f(a+1)=f(2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若等差數(shù)列的前6項和為36,前9項和為81,
(1)求an;
(2)求數(shù)列{$\frac{1}{{a}_{n+1}{a}_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x<2}\\{{x}^{2}-3,x≥2}\end{array}\right.$,則f[f(2)]的值( 。
A.-2B.1C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.觀察(x3)′=3x2,(x5)′=5x4,(sinx)′=cosx,由歸納推理可得:若f(x)是定義在R上的奇函數(shù),記g(x)為f(x)的導函數(shù),則g(-x)( 。
A.f(x)B.-f(x)C.-g(x)D.g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=x2-3x+2的零點有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知橢圓$\frac{y^2}{9}$+x2=1,過點P($\frac{1}{2}$,$\frac{1}{2}$)的直線與橢圓交于A、B兩點,且弦AB被點P平分,則直線AB的方程為( 。
A.9x+y-5=0B.9x-y-4=0C.2x+y-2=0D.x+y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\overrightarrow a=(2,\;1)$,$\overrightarrow b=(1,\;-2)$,若$m\overrightarrow a+n\overrightarrow b=(9,\;-8)(m,n∈R)$,則m-n的值為( 。
A.2B.-2C.3D.-3

查看答案和解析>>

同步練習冊答案