分析 (1)根據(jù)等差數(shù)列的前n項(xiàng)和公式列方程組解出a1和公差d,再代入通項(xiàng)公式即可;
(2)使用裂項(xiàng)法求和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
則$\left\{\begin{array}{l}{6{a}_{1}+15d=36}\\{9{a}_{1}+36d=81}\end{array}\right.$,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(2)∵$\frac{1}{{a}_{n+1}{a}_{n}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$).
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…$\frac{1}{2}$($\frac{1}{2n-1}-\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{3}+\frac{1}{3}-$$\frac{1}{5}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.
點(diǎn)評 本題考查了等差數(shù)列的性質(zhì),裂項(xiàng)法求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8個(gè) | B. | 7個(gè) | C. | 4個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
A. | 3.5 | B. | 2.2 | C. | 4.8 | D. | 3.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com