如圖16所示,四棱柱ABCD A1B1C1D1的所有棱長(zhǎng)都相等,AC∩BD=O,A1C1∩B1D1=O1,四邊形ACC1A1和四邊形BDD1B1均為矩形.
(1)證明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1OB1D的余弦值.
圖16
解:(1)如圖(a),因?yàn)樗倪呅?i>ACC1A1為矩形,所以CC1⊥AC.同理DD1⊥BD.
因?yàn)?i>CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.
由題設(shè)知,O1O∥C1C.故O1O⊥底面ABCD.
(2)方法一: 如圖(a),過O1作O1H⊥OB1于H,連接HC1.
由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.
圖(a)
又因?yàn)樗睦庵?i>ABCD A1B1C1D1的所有棱長(zhǎng)都相等,所以四邊形A1B1C1D1是菱形,
因此A1C1⊥B1D1,從而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.
進(jìn)而OB1⊥C1H.故∠C1HO1是二面角C1OB1D的平面角.
不妨設(shè)AB=2.因?yàn)椤?i>CBA=60°,所以OB=,OC=1,OB1=.
在Rt△OO1B1中,易知O1H==2.而O1C1=1,于是C1H==
即二面角C1OB1D的余弦值為.
方法二:因?yàn)樗睦庵?i>ABCD A1B1C1D1的所有棱長(zhǎng)都相等,所以四邊形ABCD是菱形,因此AC⊥BD.又O1O⊥底面ABCD,從而OB,OC,OO1兩兩垂直.
圖(b)
如圖(b),以O為坐標(biāo)原點(diǎn),OB,OC,OO1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系O xyz,不妨設(shè)AB=2.因?yàn)椤?i>CBA=60°,所以OB=,OC=1,于是相關(guān)各點(diǎn)的坐標(biāo)為O(0,0,0),
B1(,0,2),C1(0,1,2).
易知,n1=(0,1,0)是平面BDD1B1的一個(gè)法向量.
故二面角C1OB1D的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
國(guó)慶節(jié)放假,甲去北京旅游的概率為,乙、丙去北京旅游的概率分別為,.假定三人的行動(dòng)相互之間沒有影響,那么這段時(shí)間內(nèi)至少有1人去北京旅游的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
三棱錐A BCD及其側(cè)視圖、俯視圖如圖14所示.設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.
(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A NP M的余弦值.
圖14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=,PC=2,問AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖13,四棱錐PABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)二面角DAEC為60°,AP=1,AD=,求三棱錐EACD的體積.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖15,三棱柱ABC A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
圖15
(1)證明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在空間直角坐標(biāo)系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分別是三棱錐D ABC在xOy,yOz,zOx坐標(biāo)平面上的正投影圖形的面積,則( )
A.S1=S2=S3 B.S2=S1且S2≠S3
C.S3=S1且S3≠S2 D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,若橢圓C上恰好有6個(gè)不同的點(diǎn)P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com