14.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)y=f(log3x+m),x∈[$\frac{1}{3}$,3]的最小值為3,求實(shí)數(shù)m的值.

分析 (1)設(shè)出f(x)解析式,表示出f(x+1),代入已知等式確定出a,b,c的值,即可求出f(x)解析式;
(2)令t=log3x+m,得到f(t)關(guān)于t的二次函數(shù),由x∈[$\frac{1}{3}$,3]的最小值為3,利用二次函數(shù)性質(zhì)確定出m的值即可.

解答 解:(1)設(shè)f(x)=ax2+bx+c,則f(x+1)=a(x+1)2+b(x+1)+c,
∵f(x+1)-f(x)=2x-1,
∴a=1,b=-2,c=3,
則f(x)=x2-2x+3;
(2)令t=log3x+m,則t∈[m-1,m+1],
則y=f(log3x+m)=f(t)=t2-2t+3=(t-1)2+2,
當(dāng)1≤m-1?m≥2時(shí),則f(m-1)=3⇒m=3,
當(dāng)1≥m+1?m≤0時(shí),則f(m+1)=3⇒m=-1,
當(dāng)m-1<1<m+1?0<m<2時(shí),f(1)=3不成立,
綜上,m=-1或m=3.

點(diǎn)評 此題考查了二次函數(shù)的性質(zhì),利用了分類討論的思想,熟練掌握二次函數(shù)性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={1,3,x},B={1,x2},設(shè)全集為U=A∪B,若B∪(∁UB)=A,求∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若一個(gè)函數(shù)恰有兩個(gè)零點(diǎn),則稱這樣的函數(shù)為“雙胞胎”函數(shù),若函數(shù)f(x)=|ax-lnx+$\frac{a-1}{x}$|-a-3(a<0)為“雙胞胎”函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(-$\frac{2}{3}$,+∞)B.(-∞,-$\frac{2}{3}$)C.(-$\frac{2}{3}$,0)D.(-1,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(x2-3x+1)8•(2x-1)4=a0+a1x+a2x2+…+a20x20,則a2=380.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{{2x-{x^2}}}$,則f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于函數(shù)f(x)=sinx,g(x)=cosx,h(x)=x+$\frac{π}{3}$,有如下五個(gè)命題:
①f(x)-g(x)的最大值為$\sqrt{2}$;
②將f(x)的圖象向右平移$\frac{π}{2}$個(gè)單位可得g(x)的圖象;.
③f[h(x)]在區(qū)間[-$\frac{π}{2}$,0]上是增函數(shù);
④點(diǎn)($\frac{2π}{3}$,0)是函數(shù)f[h(x)]圖象的一個(gè)對稱中心;
⑤函數(shù)g[h(x)]的圖象上相鄰的兩條對稱軸之間的距離是2π.
其中真命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的值域:
(1)y=$\frac{x-1}{2x+1}$;
(2)y=$\frac{{x}^{3}-1}{{x}^{3}+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲、乙、丙、丁四位同學(xué)站成一排照相留念,則甲、乙不相鄰的排法種數(shù)為( 。
A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中角A,B,C所對的邊長分別為a,b,c,且sinAcosC+$\frac{1}{2}$sinC=sinB.
(Ⅰ)求角A的大。
(Ⅱ)若a=2,求△ABC周長的最大值及相應(yīng)的b,c值.

查看答案和解析>>

同步練習(xí)冊答案