19.已知點(diǎn)A的極坐標(biāo)為(2,$\frac{π}{6}$),直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=$\frac{1}{2}$,則點(diǎn)A到直線l的距離為$\frac{3}{2}$.

分析 先求出A的直角坐標(biāo)和直線l的直角坐標(biāo)方程,再代入距離公式計(jì)算.

解答 解:A點(diǎn)的直角坐標(biāo)為($\sqrt{3}$,1),
直線l的極坐標(biāo)方程可化為:ρsinθ+$\sqrt{3}$ρcosθ=1,
∴直線l的普通方程為$\sqrt{3}$x+y-1=0,
∴A到直線l的距離為$\frac{3+1-1}{2}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系,點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A={x|$\frac{x+1}{x-1}$≤0},B={-1,0,1},則card(A∩B)=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在十進(jìn)制數(shù)中的運(yùn)算規(guī)律是“滿十進(jìn)一”,類比這個運(yùn)算規(guī)律,進(jìn)行八進(jìn)制的四則運(yùn)算,請計(jì)算53(8)×26(8)=1662(8).(運(yùn)算結(jié)果必須用八進(jìn)制數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,若b=2$\sqrt{3}$,a=3,且三角形有解,則A的取值范圍是( 。
A.0°<A≤30°B.0°<A≤45°
C.0°<A≤60° 或120°≤A<180°D.0°<A≤60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),從單位圓外一點(diǎn)A引圓O的兩條切線,切點(diǎn)分別為B1,B2,若滿足條件|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|的向量$\overrightarrow{c}$的模最大時,則$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{x-1}{{e}^{x}},x≥a}\\{-x-1,x<a}\end{array}\right.$,g(x)=f(x)-b,若存在實(shí)數(shù)b,使得函數(shù)g(x)恰有3個零點(diǎn),則實(shí)數(shù)a的取值范圍為(-$\frac{1}{{e}^{2}}$-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ax2-2x+1存在唯一零點(diǎn),則實(shí)數(shù)a的值為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為2$\sqrt{3}$,右焦點(diǎn)F(1,0),過F作兩條互相垂直的直線分別交橢圓G于點(diǎn)A,B和C,D,設(shè)AB,CD的中點(diǎn)分別為P,Q.
(Ⅰ)求橢圓G的方程;
(Ⅱ)若直線AB,CD的斜率均存在,求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的最大值,并證明直線PQ與x軸交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且滿足:若Sn=$\frac{3}{2}$-$\frac{1}{2}$an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的各項(xiàng)為正,且滿足bn≤$\frac{{a}_{n}_{n-1}}{{a}_{n}+_{n-1}}$,b1=1,求證:bn≤1(n∈N*

查看答案和解析>>

同步練習(xí)冊答案