分析 可判斷y=logax在(0,+∞)上是減函數(shù),再由復(fù)合函數(shù)的單調(diào)性可知0≤logax≤$\frac{1}{2}$;從而解得.
解答 解:∵0<a<1,
∴y=logax在(0,+∞)上是減函數(shù),
∴0≤logax≤$\frac{1}{2}$;
即$\sqrt{a}$≤x≤1;
即g(x)=f(logax)(0<a<1)的單調(diào)遞減區(qū)間為[$\sqrt{a}$,1];
故答案為:[$\sqrt{a}$,1].
點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的單調(diào)性的應(yīng)用及對(duì)數(shù)函數(shù)的應(yīng)用,同時(shí)考查了學(xué)生讀圖的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{5}$ | D. | 2$\sqrt{5}$,或4$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com