A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
分析 設(shè)ABCD的中心為M,則∠OAM為所求角,求出球的半徑和正方形的對(duì)角線長(zhǎng),在Rt△OAM中求出cos∠OAM.
解答 解:設(shè)正方形ABCD的中心為M,連結(jié)OM,OA,則OM⊥平面ABCD,
∴∠OAM為OA與平面ABCD所成的角.
設(shè)球的半徑為r,則$\frac{4π{r}^{3}}{3}$=36π,解得r=3,即OA=3,
∵正方形ABCD邊長(zhǎng)為2$\sqrt{2}$,∴AM=2,
∴cos∠OAM=$\frac{AM}{OA}=\frac{2}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查了直線與平面所成角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù),因?yàn)?>1,所以函數(shù)y=2x是增函數(shù),這種推理是合情推理 | |
B. | 在平面中,對(duì)于三條不同的直線a,b,c,若a∥b,b∥c,則a∥c,將此結(jié)論放到空間中也是如此.這種推理是演繹推理 | |
C. | 命題$P:?{x_0}∈R,{e^{x_0}}<{x_0}$的否定是¬P:?x∈R,ex>x | |
D. | 若分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k越小,則兩個(gè)分類變量有關(guān)系的把握性越小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2x2-8x+11 | B. | f(x)=-2x2+8x-1 | C. | f(x)=2x2-4x+3 | D. | f(x)=-2x2+4x+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com