1.?dāng)?shù)列{an},{bn}滿足$\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}_{n}}\\{\frac{1}{_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{_{n}}}\end{array}\right.$,a1>0,b1>0;
(1)求證:{an•bn}是常數(shù)列;
(2)若{an}是遞減數(shù)列,求a1與b1的關(guān)系;
(3)設(shè)a1=4,b1=1,當(dāng)n≥2時,求an的取值范圍.

分析 (1)由題意可知an•bn=an-1•bn-1=…=a1•b1,故問題得以證明;
(2)根據(jù){an}是遞減數(shù)列,得到(a1-b12>0,an>bn,得到a1>b1恒成立,
(3)先判斷an+1>2,再根據(jù)an+1-an=$\frac{4-{{a}_{n}}^{2}}{2{a}_{n}}$,得到an+1-an<0,{an}是遞減數(shù)列,即可得到an-a2<0,求出an的取值范圍.

解答 解:(1)∵$\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}_{n}}\\{\frac{1}{_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{_{n}}}\end{array}\right.$,
∴2an+1=an+bn,$\frac{1}{_{n+1}}$=$\frac{{a}_{n}+_{n}}{2{a}_{n}_{{n}_{\;}}}$,
∴bn+1=$\frac{2{a}_{n}_{n}}{{a}_{n}+_{n}}$,
∴an+1bn+1=an•bn,
∴an•bn=an-1•bn-1=…=a1•b1,
∴{an•bn}是常數(shù)列;
(2){an}是遞減數(shù)列,an+1-an<0,
∵a2-a1=$\frac{1}{2}$(a1+b1)-a1=$\frac{1}{2}$(b1-a1)<0
∴a1>b1,
∵a3-a2=$\frac{1}{2}$(b2-a2)<0,
∴a2>b2,
∵$\frac{1}{2}$(a1+b1)>$\frac{2{a}_{1}_{1}}{{a}_{1}+_{1}}$,
∴(a1-b12>0,
猜想an+1-an=$\frac{1}{2}$(bn-an)<0,
∴an>bn
∴a1>b1恒成立,
∵ak+2-ak+1=$\frac{1}{2}$(bk+1-ak+1)=$\frac{\frac{2{a}_{k}_{k}}{{a}_{k}+_{k}}-\frac{{a}_{k}+_{k}}{2}}{2}$=$\frac{-({a}_{k}-_{k})^{2}}{4({a}_{k}+_{k})}$<0,
∴a1>b1時,{an}是遞減數(shù)列.
(3)整理得an+1=$\frac{1}{2}$(an+$\frac{4}{{a}_{n}}$),a1=4,
∴a2=$\frac{5}{2}$,
∴a1>0⇒a2>0⇒a3>0⇒…⇒an>0,
當(dāng)n≥2時,an+1-2=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)-2=$\frac{({{a}_{n}}^{2}-2)^{2}}{2{a}_{n}}$>0,
∴an+1>2,
∴an+1-an=$\frac{1}{2}$(bn-an)=$\frac{\frac{4}{{a}_{n}}-{a}_{n}}{2}$=$\frac{4-{{a}_{n}}^{2}}{2{a}_{n}}$,
∵an>2,
∴an+1-an<0,
∴{an}是遞減數(shù)列,
∴an-a2<0,
∴an∈(2,$\frac{5}{2}$]

點評 本題考查了遞推數(shù)列的,常數(shù)列,數(shù)列的函數(shù)特征,以及an的取值范圍,培養(yǎng)了學(xué)生的運算能力,轉(zhuǎn)化能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的傾斜角為$\frac{2π}{3}$,離心率為e,$\frac{{a}^{2}+{e}^{2}}$最小值為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐P-ABCD中,側(cè)面PDC是正三角形,底面ABCD是邊長為$2\sqrt{3}$的菱形,∠DAB=120°,且側(cè)面PDC與底面垂直,M為PB的中點.
(1)求證:PA⊥CD;
(2)求三棱錐A-CDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點A是拋物線C:x2=2py(p>0)上一點,O為坐標(biāo)原點,若以點M(0,8)為圓心,|OA|的長為半徑的圓交拋物線C于A,B兩點,且△ABO為等邊三角形,則p的值是( 。
A.$\frac{3}{8}$B.2C.6D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)正項數(shù)列{an}滿足:a1=1,且對任意的n,m∈N+,n>m,均有a2n+m•a2n-m=n2-m2成立.
(1)求a2,a3的值,并求{an}的通項公式;
(2)(ⅰ)比較a2n-1+a2n+1與2a2n的大;
(ⅱ)證明:a2+a4+…+a2n>$\frac{n}{n+1}({a_1}+{a_3}+…+{a_{2n+1}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系內(nèi),直線l:2x+y-2=0,將l與兩坐標(biāo)軸圍成的封閉圖形繞y軸旋轉(zhuǎn)一周,所得幾何體的體積為$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,m),若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統(tǒng)計了2012到2016年五年間本公司職員每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計數(shù)據(jù)如表所示:
年份(x)20122013201420152016
家庭數(shù)(y)610162226
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\hat y=\hat bx+\hat a$,判斷它們之間是正相關(guān)還是負(fù)相關(guān);并根據(jù)所求出的直線方程估計該公司2019年春節(jié)期間外出旅游的家庭數(shù).
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案