16.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積.

分析 (1)取BF中點為M,AC與BD交點為O,連結(jié)MO,ME,由已知結(jié)合三角形中位線定理可得四邊形OCEM為平行四邊形,然后利用線面平行的判定得答案;
(2)由線面垂直的性質(zhì)定理可得BC⊥平面DEF,然后把三棱錐D-BEF的體積轉(zhuǎn)化為三棱錐B-DEF的體積求解.

解答 (1)證明:如圖,記BF中點為M,AC與BD交點為O,
連結(jié)MO,ME,
由題設(shè)知,$CE=\frac{1}{2}DF$且CE∥DF,$MO=\frac{1}{2}DF$且MO=$\frac{1}{2}DF$,
即CE=MO且CE∥MO,知四邊形OCEM為平行四邊形,
有EM∥CO,即EM∥AC,
又AC?平面BEF,EM?平面BEF,
∴AC∥平面BEF;
(2)解:∵平面CDFE⊥平面ABCD,平面CDFE∩平面ABCD=DC,BC⊥DC,
∴BC⊥平面DEF,
三棱錐D-BEF的體積為${V}_{D-BEF}={V}_{B-DEF}=\frac{1}{3}{S}_{△DEF}•BC$=$\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$.

點評 本題考查直線與平面平行的判定,考查了多面體體積的求法,訓(xùn)練了等積法求三棱錐的體積,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F是雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦點,點P的坐標(biāo)為(3,1),點A在雙曲線上,則|AP|+|AF|的最小值為( 。
A.$\sqrt{37}$+4B.$\sqrt{37}$-4C.$\sqrt{37}$-2$\sqrt{5}$D.$\sqrt{37}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,已知三棱柱ABC-A1BlC1中,點D是AB的中點,平面A1DC分此棱柱成兩部分,多面體A1ADC與多面體A1B1C1DBC體積的比值為1:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在棱長為a(a>0)的正四面體ABCD中,點B1,C1,D1分別在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1為△BCD內(nèi)一點,記三棱錐A1-B1C1D1的體積V,設(shè)$\frac{A{D}_{1}}{AD}$=x,對于函數(shù)V=f(x),則( 。
A.當(dāng)x=$\frac{2}{3}$時,函數(shù)f(x)取到最大值
B.函數(shù)f(x)在($\frac{1}{2}$,1)上是減函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{1}{2}$對稱
D.存在x0,使得f(x0)$>\frac{1}{3}{V}_{A-BCD}$(其中VA-BCD為四面體ABCD的體積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐O-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱OB⊥底面ABCD,且側(cè)棱OB的長是2,點E,F(xiàn),G分別是AB,OD,BC的中點.
(Ⅰ)證明:EF∥平面BOC;
(Ⅱ)證明:OD⊥平面EFG;
(Ⅲ)求三棱錐G-EOF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an},{bn}滿足$\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}_{n}}\\{\frac{1}{_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{_{n}}}\end{array}\right.$,a1>0,b1>0;
(1)求證:{an•bn}是常數(shù)列;
(2)若{an}是遞減數(shù)列,求a1與b1的關(guān)系;
(3)設(shè)a1=4,b1=1,當(dāng)n≥2時,求an的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若P=|x|x2-2x-3<0},Q={x|x>a},且P∩Q=P,則實數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列敘述正確的個數(shù)是( 。
①若命題p:?x0∈R,x02-x0+1=0,則¬p:?x∈R,x2-x+1>0;
②已知向量$\overrightarrow{a}$,$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$<0是$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角的充要條件;
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
④在區(qū)間[0,π]上隨機取一個數(shù)x,則事件“tanx•cosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知tanα=-3,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$;          
(2)sin2α+sinαcosα+2.

查看答案和解析>>

同步練習(xí)冊答案