11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的傾斜角為$\frac{2π}{3}$,離心率為e,$\frac{{a}^{2}+{e}^{2}}$最小值為$\frac{4\sqrt{3}}{3}$.

分析 求出雙曲線的漸近線方程,由題意可得b=$\sqrt{3}$a,c=2a,e=$\frac{c}{a}$=2,再由基本不等式可得最小值.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
由題意可得-$\frac{a}$=tan$\frac{2π}{3}$=-$\sqrt{3}$,
即有b=$\sqrt{3}$a,c=2a,e=$\frac{c}{a}$=2,
則$\frac{{a}^{2}+{e}^{2}}$=$\frac{{a}^{2}+4}{\sqrt{3}a}$
=$\frac{\sqrt{3}}{3}$(a+$\frac{4}{a}$)≥$\frac{\sqrt{3}}{3}$•2$\sqrt{a•\frac{4}{a}}$=$\frac{4\sqrt{3}}{3}$.
當且僅當a=2時,取得最小值$\frac{4\sqrt{3}}{3}$.
故答案為:$\frac{{4\sqrt{3}}}{3}$.

點評 本題考查雙曲線的方程和性質,考查離心率公式的運用,以及基本不等式的運用:求最值,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項和為Sn,S11=22,a4=-12,如果當n=m時,Sn最小,那么m的值為( 。
A.10B.9C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,某人打算做一個正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充.已知金字塔的每一條棱和邊都相等
(1)求證:直線AC垂直于直線SD.
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個金字塔內部填滿?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn),H分別是BC,PC,PD的中點.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)設平面PAB∩平面PCD=l,求證:FH∥l;
(Ⅲ)若AB=1,且AF=$\frac{\sqrt{2}}{2}$,求多面體AEFH的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知F是雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦點,點P的坐標為(3,1),點A在雙曲線上,則|AP|+|AF|的最小值為(  )
A.$\sqrt{37}$+4B.$\sqrt{37}$-4C.$\sqrt{37}$-2$\sqrt{5}$D.$\sqrt{37}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,AB=AC,且側面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求證:AB1⊥BC;
(Ⅱ)若AB⊥AC,AB1=BB1,且該三棱柱的體積為2$\sqrt{6}$,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知雙曲線M:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1與橢圓N:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)共焦點,且橢圓N過點(2$\sqrt{2}$,1)
(1)求橢圓N的長軸長與短軸長
(2)設橢圓N與雙曲線M在第一象限的交點為A,公共的左焦點為F,求|AF|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,Sn=2an-3n,(n∈N+
(1)求a1,a2;
(2)求證:數(shù)列{an+3}成等比數(shù)列;
(3)求數(shù)列{an}的通項公式an;
(4)數(shù)列{an}中是否存在三項,它們可以構成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.數(shù)列{an},{bn}滿足$\left\{\begin{array}{l}{{a}_{n+1}=\frac{1}{2}{a}_{n}+\frac{1}{2}_{n}}\\{\frac{1}{_{n+1}}=\frac{1}{2}•\frac{1}{{a}_{n}}+\frac{1}{2}•\frac{1}{_{n}}}\end{array}\right.$,a1>0,b1>0;
(1)求證:{an•bn}是常數(shù)列;
(2)若{an}是遞減數(shù)列,求a1與b1的關系;
(3)設a1=4,b1=1,當n≥2時,求an的取值范圍.

查看答案和解析>>

同步練習冊答案