3.已知直線l:x+y-6=0和曲線M:x2+y2-2x-2y-2=0,點(diǎn)A在直線上,若直線AC與曲線M至少有一個(gè)公共點(diǎn)C,且∠MAC=30°,則點(diǎn)A的橫坐標(biāo)的取值范圍是.[1,5].

分析 設(shè)點(diǎn)A的坐標(biāo)為(x0,6-x0),圓心M到直線AC的距離為d,則d=|AM|sin30°,由直線AC與⊙M有交點(diǎn),知d=|AM|sin30°≤2,由此能求出點(diǎn)A的橫坐標(biāo)的取值范圍.

解答 解:如圖,設(shè)點(diǎn)A的坐標(biāo)為(x0,6-x0),
圓心M到直線AC的距離為d,
則d=|AM|sin30°,
∵直線AC與⊙M有交點(diǎn),
∴d=|AM|sin30°≤2,
∴(x0-1)2+(5-x02≤16,
∴1≤x0≤5,
故答案為[1,5].

點(diǎn)評(píng) 本題考查直線和圓的方程的綜合運(yùn)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四個(gè)結(jié)論正確的個(gè)數(shù)是( 。
①若n組數(shù)據(jù)(x1,y1),…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1
②回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線
③已知點(diǎn)A(-1,0),B(1,0),若|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡為橢圓
④設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等差數(shù)列{an}的公差d≠0,且a1、a3、a9成等比數(shù)列,則$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$的值是$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)f(x)=(x-a)6,若$\frac{f′(0)}{f(0)}$=-3,則f(x)的展開(kāi)式中的x4系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在某項(xiàng)娛樂(lè)活動(dòng)的海選過(guò)程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過(guò)40分的選手將直接被淘汰,成績(jī)?cè)冢?0,60)內(nèi)的選手可以參加復(fù)活賽,如果通過(guò),也可以參加第二輪比賽.
(1)已知成績(jī)合格的200名參賽選手成績(jī)的頻率分布直方圖如圖,估計(jì)這200名參賽選手的成績(jī)平分?jǐn)?shù)和中位數(shù);
(2)根據(jù)已有的經(jīng)驗(yàn),參加復(fù)活賽的選手能夠進(jìn)入第二輪比賽的概率如表:
 參賽選手成績(jī)所在區(qū)間 (40,50] (50,60)
 每名選手能夠進(jìn)入第二輪的概率 $\frac{1}{2}$ $\frac{2}{3}$
假設(shè)每名選手能否通過(guò)復(fù)活賽相互獨(dú)立,現(xiàn)有4名選手的成績(jī)分別為(單位:分)43,45,52,58,記這4名選手在復(fù)活賽中通過(guò)的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.C${\;}_{3n}^{38-n}$+C${\;}_{n+21}^{3n}$=( 。
A.466B.478C.512D.526

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=1-2sin2x+2cosx的最大值和最小值分別為( 。
A.-1,1B.$-\frac{3}{2},-1$C.$-\frac{3}{2},3$D.$-2,\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F恰好是圓F:x2+y2-4x+3=0的圓心,且點(diǎn)F到雙曲線C的一條漸近線的距離為1,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“?x∈R,a${\;}_{n+1}^{2}$=anan+2”是“數(shù)列{an}為等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案