A. | e=-1 | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{1}{2}$ |
分析 設長軸為2a,短軸為2b,焦距為2c,運用等差數(shù)列的中項的性質可得a+c=2b,兩邊平方,結合a,b,c的關系和離心率公式,計算即可得到所求值.
解答 解:設長軸為2a,短軸為2b,焦距為2c,
由橢圓長軸的長度,短軸的長度和焦距依次成等差數(shù)列,
可得2a+2c=2×2b,
即a+c=2b⇒(a+c)2=4b2=4(a2-c2),
所以3a2-5c2=2ac,兩邊同除以a2,
整理得5e2+2e-3=0,
解得e=$\frac{3}{5}$或e=-1(舍去),
故選:B.
點評 本題考查橢圓的離心率的求法,注意運用等差數(shù)列的中項的性質,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{5}$ | B. | $\frac{8}{5}$ | C. | $\frac{7}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com