分析 (1)推導出GH∥B1C1∥BC,由此能證明GH∥面ABC.
(2)推導出EF∥BC,A1E∥BG,由此能證明平面EFA1∥平面BCHG.
解答 證明:(1)∵在三棱柱ABCA1B1C1中,
E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,
∴GH∥B1C1∥BC,
∵GH?平面ABC,BC?平面ABC,
∴GH∥面ABC.
(2)∵在三棱柱ABCA1B1C1中,
E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,
∴EF∥BC,A1G$\underset{∥}{=}$BE,
∴四邊形BGA1E是平行四邊形,∴A1E∥BG,
∵A1E∩EF=E,BG∩BC=B,
A1E,EF?平面EFA1,BG,BC?平面BCHG,
∴平面EFA1∥平面BCHG.
點評 本題考查線面平行的證明,考查面面平行的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y軸對稱 | B. | 原點對稱 | C. | 直線y=x對稱 | D. | 直線y=-x對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (0,+∞) | C. | (-∞,1) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com