11.在平面幾何中,已知三角形ABC的面積為S,周長為L,求三角形內(nèi)切圓半徑時,可用如下方法,設(shè)圓O為內(nèi)切圓圓心,則S=S△OAB+S△OBC+S△OAC=$\frac{1}{2}$r|AB|+$\frac{1}{2}$r|BC|+$\frac{1}{2}$r|AC|=$\frac{1}{2}$rL,∴r=$\frac{2S}{L}$
類比此類方法,已知三棱錐的體積為V,表面積為S,各棱長之和為L,則內(nèi)切球半徑r為( 。
A.$\frac{2V}{S}$B.$\frac{2V}{L}$C.$\frac{3V}{S}$D.$\frac{3V}{L}$

分析 根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個面的距離都是R,
所以四面體的體積等于以O(shè)為頂點,
分別以四個面為底面的4個三棱錐體積的和.
則四面體的體積為V=$\frac{1}{3}$Sr
猜想:三棱錐的體積為V,表面積為S,各棱長之和為L,
則四面體ABCD的內(nèi)切球半徑r=$\frac{3V}{S}$
故選:C.

點評 本題主要考查類比推理.類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖l是某縣參加2016年高考的學(xué)生身高條形統(tǒng)計圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1、A2、
…、Am(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù)).圖2是統(tǒng)計圖l中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.根據(jù)流程圖中輸出的S值是1850.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,a2+a3=5,a1=4,則公差d等于( 。
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線3x-y-1=0平行,求實數(shù)a的值;
(2)若函數(shù)F(x)=g(x)+$\frac{1}{2}$x2有兩個極值點x1,x2,且x1<x2,求證:f(x2)-1<f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.圓(x-a)2+(y-b)2=r2(r>0)在點P(x0,y0)處切線的方程為(x0-a)(x-a)+(y0-b)(y-b)=r2,由此類比,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在點P(x0,y0)處切線的方程為$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于非零實數(shù)a,b,c,以下四個命題都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,則b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么類比于此,對于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,相應(yīng)命題仍然成立的所有序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,設(shè)A、B、C、D為球O球上四點,若AB、AC、AD兩兩垂直,且AB=AC=$\sqrt{3}$,若AD=R(R為球O的半徑),則球O的表面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2-bx+alnx.
(Ⅰ) 若b=2,函數(shù)f(x)有兩個極值點x1,x2,且x1<x2,求實數(shù)a的取值范圍;
(Ⅱ) 在(Ⅰ)的條件下,證明:f(x2)>-$\frac{3+2ln2}{4}$;
(Ⅲ) 若對任意b∈[1,2],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求y=$\frac{x-2}{(x-1)^{2}}$(x>2)的最大值.

查看答案和解析>>

同步練習(xí)冊答案