已知函數(shù)f(x)滿足(
1
2
)f(x)
=x+1,f-1(x)是f(x)的反函數(shù),則函數(shù)y=f-1(x-1)的圖象是( 。
A、
B、
C、
D、
考點:反函數(shù),指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(
1
2
)f(x)
=x+1,解得x=(
1
2
)y-1
,可得f-1(x)=(
1
2
)x
-1,函數(shù)y=f-1(x-1)=(
1
2
)x-1
-1,由于其圖象單調(diào)遞減,且經(jīng)過(1,0),即可得出.
解答: 解:∵(
1
2
)f(x)
=x+1,解得x=(
1
2
)y-1
,
把x與y互換可得:y=(
1
2
)x
-1,
∴f-1(x)=(
1
2
)x
-1,
∴函數(shù)y=f-1(x-1)=(
1
2
)x-1
-1,
其圖象單調(diào)遞減,且經(jīng)過(1,0),
故選:A.
點評:本題考查了反函數(shù)的求法、函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想方法,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(2,2,1),
CD
=(4,5,3)
,則平面ABC的單位法向量是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個命題與他們的逆命題、否命題、逆否命題這4個命題中( 。
A、真命題與假命題的個數(shù)相同
B、真命題的個數(shù)一定是奇數(shù)
C、真命題的個數(shù)一定是偶數(shù)
D、真命題的個數(shù)可能是奇數(shù),也可能是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x(x>1)的反函數(shù)為f-1(x),若f-1(a)•f-1(4b)=2,則
1
a
+
1
b
的最小值是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①若A={整數(shù)},B={正奇數(shù)},則一定不能建立一個從集合A到集合B的映射;
②若A是無限集,B是有限集,則一定不能建立一個從集合A到集合B的映射;
③若A={a},B={1,2},則從集合A到集合B只能建立一個映射;
④若A={1,2},B={a},則從集合A到集合B只能建立一個映射.
其中正確命題的個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖①對應(yīng)于函數(shù)f(x),則在下列給出的四個函數(shù)中,圖②對應(yīng)的函數(shù)只能是(  )
A、y=f(|x|)
B、y=|f(x)|
C、y=f(-|x|)
D、y=-f(|x|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點在原點、焦點在直線
x
4
-
y
3
=1上的拋物線的標(biāo)準方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sina=
3
5
,且a是第二象限角,則tana[cos(π-a)+sin(π+a)]的值等于( 。
A、
21
20
B、
3
20
C、-
21
20
D、-
3
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f (x)=
0(x為有理數(shù))
1(x為無理數(shù))
,則f(f(x))(x∈R) 的值為(  )
A、0B、1
C、0或1D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案