分析 由題意可得ω•$\frac{π}{4}$+$\frac{π}{3}$≥$\frac{π}{2}$,且ω•$\frac{π}{2}$+$\frac{π}{3}$≤$\frac{3π}{2}$,求得ω的范圍.
解答 解:由于函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)在[$\frac{π}{4}$,$\frac{π}{2}$]上是減函數(shù),
∴ω•$\frac{π}{4}$+$\frac{π}{3}$≥$\frac{π}{2}$,且ω•$\frac{π}{2}$+$\frac{π}{3}$≤$\frac{3π}{2}$,求得$\frac{2}{3}$≤ω≤$\frac{7}{3}$,
故答案為:$[{\frac{2}{3},\frac{7}{3}}]$.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的減區(qū)間,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞) | B. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | C. | (-∞,-$\frac{\sqrt{3}}{2}$]∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x3-1 | B. | f(x)=x+cosx | C. | f(x)=xsinx | D. | f(x)=lg(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com