分析 $\int_0^2{(1+\sqrt{8-2{x^2}}})dx$=${∫}_{0}^{2}$dx+$\sqrt{2}$${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$,由于${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$表示x2+y2=4的一半的面積,即可得出.
解答 解:$\int_0^2{(1+\sqrt{8-2{x^2}}})dx$=${∫}_{0}^{2}$dx+$\sqrt{2}$${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$,
∵${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$表示x2+y2=4的一半的面積,
∴$\int_0^2{(1+\sqrt{8-2{x^2}}})dx$=$x{|}_{0}^{2}$+$\sqrt{2}$×$\frac{1}{2}×π×{2}^{2}$=2+$2\sqrt{2}π$.
故答案為:2+$2\sqrt{2}π$.
點評 本題考查了微積分基本定理的應用、圓的面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$] | B. | (-∞,-$\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞) | C. | [-$\sqrt{3}$,$\sqrt{3}$] | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com