分析 利用代入法,即可得到伸縮變換的曲線方程.
解答 解:∵$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$,
∴x=2x′,y=$\frac{1}{2}$y′,
代入曲線$\frac{{x}^{2}}{4}$-y2=1可得$\frac{4x{′}^{2}}{4}-\frac{y{′}^{2}}{4}$=1,即x2-$\frac{{y}^{2}}{4}$=1.
故答案為:x2-$\frac{{y}^{2}}{4}$=1.
點(diǎn)評(píng) 本題考查代入法求軌跡方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{{\sqrt{6}}}{9}$ | B. | $\frac{{\sqrt{6}}}{9}$ | C. | -$\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $\frac{{12\sqrt{5}}}{5}$ | C. | $\frac{{9\sqrt{2}}}{5}$ | D. | $\frac{{9\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 54 | B. | 36 | C. | 24 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com