曲線y=x3的一條切線經(jīng)過點(2,4),求切點的坐標.
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義即可求出切線方程,由切線經(jīng)過點(2,4),即可解得結(jié)論.
解答: 解:設(shè)切于點Q(x0,y0),
∵y=x3,
∴y'=3x2,
則切線方程為y-y0=3x02(x-x0),
∵切線經(jīng)過(2,4),
∴4-
x
3
0
=3x02(2-x0),
即x03-3x02+2=0,
解得 x0=1,或x0=2,∴y0=1或y0=8
∴Q(1,1)或Q(2,8).
點評:本題主要考查導數(shù)的幾何意義,求出函數(shù)的導數(shù)即可求出切線斜率,注意區(qū)分直線過點的切線和在某點的切線的區(qū)別.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x>1},B={x|x<a},若A∪B=R,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則( 。
A、k1<k2<k3
B、k3<k1<k2
C、k3<k2<k1
D、k1<k3<k2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使得x2+2ax+2-a=0成立,命題q:?x∈[0,1],使得x+1<a,若命題p且¬q為真命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從橢圓上一點A看橢圓的兩焦點F1,F(xiàn)2的視角為直角,AF1的延長線交橢圓于點B,且AB=AF2,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x的反函數(shù)經(jīng)過點(18,a+2),設(shè)g(x)=3ax-4x的定義域為區(qū)間[-1,1],
(1)求g(x)的解析式;
(2)若方程g(x)=m有解,求m的取值范圍;
(3)對于任意的n∈R,試討論方程g(|x|)+2|x|+1=n的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠原產(chǎn)量為a,經(jīng)過n年增長到b,平均每年增長的百分數(shù)為x,把n用x、a、b表示就是n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用小立方塊搭一個幾何體,使它的正視圖和俯視圖如圖所示,則它需要的小立方塊的個數(shù)最多是( 。
A、12B、13C、14D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=1-|1-2x|,x∈[0,1],函數(shù)g(x)=x2-2x+1,x∈[0,1],定義函數(shù)F(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x).
那么方程F(x)•2x=1的實根的個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

同步練習冊答案