7.若a=20.2,b=log30.3,c=lg2,則a、b、c的大小關系為a>c>b.

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=20.2>1,b=log30.3<0,0<c=lg2<1,
∴a>c>b.
故答案為:a>c>b.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=$\sqrt{1-2cosx}$的減區(qū)間為[-π+2kπ,-$\frac{π}{3}$+2kπ](k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=4(a>0),則a${\;}^{\frac{3}{2}}$+a${\;}^{-\frac{3}{2}}$=52.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知關于x的不等式丨x-1丨≤m-2的解集為$[\begin{array}{l}{0,2}\\{\;}\end{array}]$
(1)求實數(shù)m的值
(2)若a,b均為正實數(shù),且滿足a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.化簡求值:($\frac{x-1}{{x}^{2}-1}$+$\frac{1}{x+1}$)÷$\frac{4}{{x}^{2}+x}$,其中x=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=kx+b且f(1)=3,f(-1)=1,則2k+b=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,且A,B,C構(gòu)成公差小于0的等差數(shù)列,則sin2$\frac{A-C}{2}$的取值范圍是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.三棱錐P-ABC中,PA=PB=PC=4,BC=BA=2$\sqrt{2}$,BC⊥BA,P-ABC的各個頂點在一個球面上,則該球的表面積為$\frac{64π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a=($\frac{5}{3}$)0.2,b=($\frac{2}{3}$)10,c=log0.36,則a,b,c的大小關系為( 。
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

同步練習冊答案