18.已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=4(a>0),則a${\;}^{\frac{3}{2}}$+a${\;}^{-\frac{3}{2}}$=52.

分析 利用平方整體代入得出整式的關(guān)系即可求解.

解答 解:∵a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=4(a>0),
∴a+a-1=42-2=14,a2+a-2=142-2=194,
∵a3+a-3=(a+a-1)(a2+a-2-1)=4×193=2702
∴(a${\;}^{\frac{3}{2}}$+a${\;}^{-\frac{3}{2}}$)2=a3+a-3+2=2704,
∴a${\;}^{\frac{3}{2}}$+a${\;}^{-\frac{3}{2}}$=$\sqrt{2704}$=52,
故答案為:52.

點(diǎn)評(píng) 本題考查了代數(shù)式的化簡(jiǎn)求值,準(zhǔn)確化簡(jiǎn)整體代入即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,∠C=60°,AC=2,BC=3,那么AB等于( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowkjbuzbk$及實(shí)數(shù)x,y滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow$,$\overrightarrowxcnkvbm$=-y•$\overrightarrow{a}$+x•$\overrightarrow$,若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥$\overrightarrowh0xhxzw$,且|$\overrightarrow{c}$|≤$\sqrt{10}$.
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x)及其定義域;
(2)若當(dāng)x∈(1,$\sqrt{6}$)時(shí),不等式f(x)≥mx+16恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)φ(x)=ax2+bx+1(a,b∈R)
(1)若φ(-1)=0,且對(duì)任意實(shí)數(shù)x均有φ(x)≥0成立,求實(shí)數(shù)a,b的值;
(2)在(1)的條件下,令f(x)=φ(x)-4x,若g(x)與f(x)在(1,+∞)上有相同的單調(diào)性,1<x1<x2,x3=mx1+(1-m)x2,x4=(1-m)x1+mx2且x3>1,x4>1,試比較:|g(x3)-g(x4)|與|g(x1)-g(x2)|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=lg(x+2)(x>-2),當(dāng)y<0時(shí),x的取值范圍是(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.用五點(diǎn)法作下列函數(shù)的簡(jiǎn)圖:
(1)y=sinx-2,x∈[-$\frac{π}{2}$,$\frac{3π}{2}$];
(2)y=cosx-1,x∈[-$\frac{π}{2}$,$\frac{3π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=cos(2x-$\frac{π}{6}$)-$\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小值,并求函數(shù)f(x)取得最小值時(shí)x值的集合;
(2)若f($\frac{1}{2}$α+$\frac{π}{6}$)=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若a=20.2,b=log30.3,c=lg2,則a、b、c的大小關(guān)系為a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2cos(ωx+θ)(ω>0,0≤θ≤$\frac{π}{2}$)的圖象與y軸交于點(diǎn)(0,$\sqrt{3}$),且該函數(shù)的最小正周期為π.
(1)當(dāng)x∈[$\frac{π}{12}$,$\frac{7π}{12}$]時(shí),求函數(shù)f(x)的值域;
(2)若f($\frac{1}{2}$α+$\frac{π}{6}$)=$\frac{2}{3}$,f(-$\frac{7π}{12}-\frac{1}{2}β$)=$\frac{3}{2}$,α,β∈(π,$\frac{3π}{2}$),求sin(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案