16.已知,△ABC內(nèi)接于圓,延長AB到D點,使得DC=2DB,DC交圓于E點.
(1)求證:AD=2DE;
(2)若AC=DC,求證:DB=BE.

分析 (1)連接BE,由切割線定理可得DB•DA=DE•DC,結(jié)合已知條件,即可得到DA=2DE;
(2)運用等腰三角形的性質(zhì),等邊對等角,圓的內(nèi)接四邊形的性質(zhì):四邊形的一個外角等于它的內(nèi)對角,結(jié)合條件,即可得到DB=BE.

解答 證明:(1)連接BE,
由切割線定理可得DB•DA=DE•DC,
即$\frac{DB}{DC}$=$\frac{DE}{DA}$,
由DC=2DB,
可得DA=2DE;
(2)由AC=DC,可得∠D=∠A,
又∠BED=∠A,
可得∠BED=∠D,
即有BD=BE.

點評 本題考查圓的割線定理、圓的內(nèi)接四邊形的性質(zhì)的運用,考查等腰三角形的性質(zhì),同時考查推理能力和運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知極坐標系的極點在直角坐標系的原點處,極軸與x軸的正半軸重合,直線l的極坐標方程為ρsin(θ+$\frac{π}{4}}$)=$\frac{{3\sqrt{2}}}{2}$,曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}$(α是參數(shù)).
(I)求直線l及曲線C的直角坐標方程;
(II)求曲線C上的點到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖是正方體的表面展開圖,則圖中的直線AB,CD在原正方體中是(  )
A.平行B.相交成60°角C.異面成60°角D.異面垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$,
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標方程;
(Ⅱ)設(shè)點M(0,2),曲線C1與曲線C2交于A,B兩點,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若關(guān)于x,y的方程組$\left\{\begin{array}{l}{sinx=msi{n}^{3}y}\\{cosx=mco{s}^{3}y}\end{array}\right.$有實數(shù)解,則正實數(shù)m的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+1)x2+bx+c的導函數(shù)為f′(x),在區(qū)間(-2,0)內(nèi)任取兩個實數(shù)a,b,則f′(1)•f′(-1)<0的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C:$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),直線l:$\left\{\begin{array}{l}{x=3+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸非負半軸為極軸建立極坐標系.
(1)寫出曲線C的極坐標方程,直線l的普通方程;
(2)點A在曲線C上,B點在直線l上,求A,B兩點間距離|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=alnx-x+2,其中a≠0.若對于任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)+f(x2)=4,則實數(shù)a=e+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+alnx(a≠0).
(1)若x=1是函數(shù)f(x)的極值點,求a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案