16.設(shè)拋物線y2=4x的焦點(diǎn)為F,A,B兩點(diǎn)在拋物線上,且A,B,F(xiàn)三點(diǎn)共線,過AB的中點(diǎn)M作y軸的垂線與拋物線在第一象限內(nèi)交于點(diǎn)P,若|PF|=$\frac{3}{2}$,則M點(diǎn)的橫坐標(biāo)為2.

分析 求出拋物線焦點(diǎn)為F(1,0),準(zhǔn)線為l:x=-1.設(shè)A(x1,y1)、B(x2,y2),直線AB的方程為y=k(x-1),由AB方程與拋物線方程消去y得關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系算出算出P的坐標(biāo),根據(jù)|PF|=$\frac{3}{2}$,利用點(diǎn)到兩點(diǎn)間的距離公式解出k2=2,從而算出x1+x2=4,進(jìn)而得到答案.

解答 解:∵拋物線方程為y2=4x,
∴拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線為l:x=-1,
設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-1),
代入拋物線方程消去y,得k2x2-(2k2+4)x+k2=0,
∴x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,x1x2=1,
∵過AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,
∴設(shè)P的坐標(biāo)為(x0,y0),可得y0=$\frac{1}{2}$(y1+y2),
∵y1=k(x1-1),y2=k(x2-1),
∴y1+y2=k(x1+x2)-2k=k•$\frac{2{k}^{2}+4}{{k}^{2}}$-2k=$\frac{4}{k}$,
得到y(tǒng)0=$\frac{2}{k}$,所以x0=$\frac{1}{{k}^{2}}$,可得M($\frac{2}{k}$,$\frac{1}{{k}^{2}}$).
∵|PF|=$\frac{3}{2}$,
∴$\sqrt{(1-\frac{1}{{k}^{2}})^{2}+\frac{4}{{k}^{2}}}$=$\frac{3}{2}$,解之得k2=2,
因此x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$=4,
∴M點(diǎn)的橫坐標(biāo)為$\frac{1}{2}$(x1+x2)=2,
故答案為:2

點(diǎn)評(píng) 本題主要考查了拋物線的性質(zhì).利用拋物線上的點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,把線段長(zhǎng)度的轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)的問題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)和為Sn,若當(dāng)首項(xiàng)a1和公差d變化時(shí),a3+a10+a11是一個(gè)定值,則下列選項(xiàng)中為定值的是( 。
A.S17B.S16C.S15D.S14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中,正確命題的序號(hào)為( 。
A.命題p:?x∈R,使得x2-1≥0,命題q:?x∈R,使得x2-x-1≥0,則命題p∨¬q是假命題
B.非零向量$\overrightarrow{a}$,$\overrightarrow$,“$\overrightarrow{a}$•$\overrightarrow$>0”是“$\overrightarrow{a}$與$\overrightarrow$夾角是銳角”的充要條件
C.“兩直線2x-my-1=0與x+my-1=0垂直”是“$m=±\sqrt{2}$”的充要條件
D.“a=1”是“函數(shù)f(x)=x2+|x+a-1|(x∈R)為偶函數(shù)”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn)P及點(diǎn)A(0,2),則|PA|的最大值為$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)非零向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則θ∈($\frac{π}{2}$,π)是$\overrightarrow{a}$•$\overrightarrow$<0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x+1|-|2x-1|.
(1)求不等式f(x)<-1的解集;
(2)若不等式f(x)≤a|x-2|對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|x-1|+|x-3a|+3a,x∈R.
(1)當(dāng)a=1時(shí),求不等式f(x)>7的解集;
(2)對(duì)任意m∈R+,x∈R恒有f(x)≥9-m-$\frac{4}{m}$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=x3-x的奇偶性,正確的說法是(  )
A.f(x)是奇函數(shù)但不是偶函數(shù)B.f(x)是偶函數(shù)但不是奇函數(shù)
C.f(x)是奇函數(shù)又是偶函數(shù)D.f(x)既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow{a}$=3$\overrightarrow{e}$1-5$\overrightarrow{e}$2 ,$\overrightarrow$=$\frac{1}{5}$$\overrightarrow{e}$1-$\frac{1}{3}$$\overrightarrow{e}$2,則$\overrightarrow{a}$與$\overrightarrow$的關(guān)系是$\overrightarrow{a}=15\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊(cè)答案