18.計算下列定積分:
${∫}_{0}^{1}$$\root{3}{x}$(1+$\sqrt{x}$)dx.

分析 由定積分的運算可得原式=${∫}_{0}^{1}$(${x}^{\frac{1}{3}}$+${x}^{\frac{5}{6}}$)dx=($\frac{3}{4}$${x}^{\frac{4}{3}}$+$\frac{6}{11}$${x}^{\frac{11}{6}}$)${|}_{0}^{1}$,代值計算可得.

解答 解:原式=${∫}_{0}^{1}$($\root{3}{x}$+$\root{3}{x}$•$\sqrt{x}$)dx
=${∫}_{0}^{1}$(${x}^{\frac{1}{3}}$+${x}^{\frac{5}{6}}$)dx=($\frac{3}{4}$${x}^{\frac{4}{3}}$+$\frac{6}{11}$${x}^{\frac{11}{6}}$)${|}_{0}^{1}$=$\frac{57}{44}$

點評 本題考查定積分的運算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.正方體中,E,F(xiàn),G分別是A′D′、B′C′、D′C′的中點.
(1)求直線BA′和CC′所成的角的大小;
(2)求直線EG和BD′所成的角的大;
(3)證明:四邊形ABFE為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{2π+1}{3}$B.$\frac{2π+3}{3}$C.$\frac{4π+1}{3}$D.$\frac{4π+3}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知瞭望塔BA的高度為40m,為測得古塔DC的高度,在B處望占塔的頂部,仰角是60°,在A處再次望古塔的頂部,仰角為45°.
(1)求古塔DC的高度;
(2)試確定在瞭望塔的某個位置(線段BA上)P,使得觀察古塔DC的視角∠CPD最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=2x+1,求集合A和B;
(2)求證A⊆B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若方程4x-(m+1)•2x+2-m=0有兩個不等的實根,則實數(shù)m范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.甲、乙兩廠污水的排放量W與時間t的關(guān)系如圖所示,治污效果較好的是(  )
A.B.C.相同D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a>0,h(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點x0,使h(x0)>g(x0)成立,則實數(shù)a的取值范圍為(  )
A.($\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$,+∞)B.($\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$+∞)C.(-∞,$\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$)D.(-∞,$\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$)

查看答案和解析>>

同步練習(xí)冊答案