3.求函數(shù)f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定義域.

分析 由題意得3x-1≥1,從而解得.

解答 解:由題意得,
3x-1≥1,
解得,x≥$\frac{2}{3}$;
故函數(shù)f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定義域?yàn)閇$\frac{2}{3}$,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的定義域的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題p:“x>0,y>0“,命題q:“xy>0“,則命題p是命題q的(  )
A.充要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,ABCD是正方形,SA⊥平面ABCD,BK⊥SC于點(diǎn)K,連接DK,求證:
(1)平面SBC⊥平面KBD;
(2)平面SBC不垂直于平面SDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知cos(θ-$\frac{2π}{5}$)=$\frac{2}{3}$,則2sin($\frac{19π}{10}$-θ)+cos(θ+$\frac{13π}{5}$)等于(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算下列定積分:
${∫}_{0}^{1}$$\root{3}{x}$(1+$\sqrt{x}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若log4(x-1)=$\frac{1}{2}$,則x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在三棱柱ABC-A1B1C1中,E∈BC,F(xiàn)∈B1C1,EF∥C1C,點(diǎn)M∈側(cè)面AA1B1B,設(shè)點(diǎn)M,E,F(xiàn)確定平面γ.試作出平面γ與三棱柱ABC-A1B1C1表面的交線(xiàn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.過(guò)點(diǎn)M(-1,$\frac{1}{2}$)的直線(xiàn)l與橢圓x2+2y2=2交于A,B兩點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)為M,設(shè)直線(xiàn)l的斜率為k1(k1≠0),直線(xiàn)OM的斜率為k2,則k1k2的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(I)判斷并證明f(x)的奇偶性;
(II)若函數(shù)F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案