若函數(shù)f(x)=k•cosx的圖象過點(diǎn)P(
π
3
,1),則該函數(shù)圖象在P點(diǎn)處的切線斜率等于(  )
A、1
B、-
3
C、2
D、
3
2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:運(yùn)用代入法,求得k=2,再求函數(shù)的導(dǎo)數(shù),再令x=
π
3
,即可得到切線的斜率.
解答: 解:函數(shù)f(x)=k•cosx的圖象過點(diǎn)P(
π
3
,1),
則k•cos
π
3
=1,即k=2,
則f(x)=2cosx,導(dǎo)數(shù)f′(x)=-2sinx,
則該函數(shù)圖象在P點(diǎn)處的切線斜率為-2sin
π
3
=-
3

故選B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:曲線在該點(diǎn)處的切線的斜率,考查特殊角的三角函數(shù)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個(gè)數(shù)有( 。
①?x∈R,x2+x+
1
4
≥0;
②?x∈R,x2+2x+2<0

③函數(shù)y=log
1
2
x
是定義域內(nèi)的單調(diào)遞減函數(shù).
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ab<0,函數(shù)f(x)=x3-2ax2-bx在x=1處的切線斜率為1,則
1
a
+
1
b
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓.C:x2+y2-2x+4y-4=0
(1)已知直線l過點(diǎn)( 3,1),若直線l與圓C:x2+y2-2x+4y-4=0有兩個(gè)交點(diǎn),求直線l斜率k的取值范圍(理科);
(2)是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且OA⊥OB(為坐標(biāo)原點(diǎn)).若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O是A、B、P三點(diǎn)所在直線外一點(diǎn),且滿足條件:
OP
=a1
OA
+a4021
OB
,其中{an}為等差數(shù)列,則a2011等于( 。
A、-
1
2
B、1
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程log2x=7-x的根x0∈(n,n+1),則整數(shù)n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L:y=x-2與雙曲線
x2
a2
-
y2
b2
=1相交于A、B兩點(diǎn).
(1)若直線L過該雙曲線的右焦點(diǎn),且點(diǎn)P(1,0)在該雙曲線上,求雙曲線的方程;
(2)若
OA
OB
=0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線l與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)相交于A,B兩點(diǎn),且AB的中點(diǎn)為M(1,3),則雙曲線的漸近線方程為( 。
A、y=±3x
B、y=±
3
x
C、y=±
1
3
x
D、y=±
3
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,角A,B,C成等差數(shù)列;
(1)求cosB的值;
(2)若b=2,△ABC的面積為
3
,求a,c.

查看答案和解析>>

同步練習(xí)冊(cè)答案