15.已知a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx,則二項式(1-$\frac{a}{x}$)5的展開式中x-3的系數(shù)為( 。
A.160B.80C.-80D.-160

分析 求定積分可得a的值,再根據(jù)二項式展開式的通項公式,求得展開式中x-3的系數(shù).

解答 解:a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx=2,則二項式(1-$\frac{a}{x}$)5 =(1-$\frac{2}{x}$)5 的展開式的通項公式為 Tr+1=${C}_{5}^{r}$•(-2)r•x-r,
令-r=-3,求得r=3,可得展開式中x-3的系數(shù)為${C}_{5}^{3}$•(-2)3=-80,
故選:C.

點評 本題主要考查求定積分,二項式定理的應(yīng)用,二項式展開式的通項公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,點D,E,F(xiàn)分別為AC,AB,A1C1的中點.
(Ⅰ)求證:A1D⊥平面ABC;
(Ⅱ)求證:EF∥平面BB1C1C;
(Ⅲ)寫出四棱錐A1-BB1C1C的體積.(只寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,若輸入x=6,則輸出y的值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某幾何體的三視圖如圖所示,正視圖與側(cè)視圖完全相同,則該幾何體的體積為$\frac{64-8π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,在三棱錐P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N為線段PC上的點,若MN=$\sqrt{2}$,則三棱錐A-MNB的體積為(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作一條直線,當直線傾斜角為$\frac{π}{6}$時,直線與雙曲線左、右兩支各有一個交點;當直線傾斜角為$\frac{π}{3}$時,直線與雙曲線右支有兩個不同的交點,則雙曲線離心率的取值范圍為( 。
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.$({\frac{{2\sqrt{3}}}{3},2})$C.$(1,\sqrt{3})$D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,已知在四棱錐P-ABCD中,底面四邊形ABCD是直角梯形,BC∥AD,BC⊥CD,AD=CD=2BC=4,△PAD是等邊三角形,平面PAD⊥平面ABCD,E,F(xiàn)分別是PD,PC的中點,M為CD上一點.
(1)求證:平面BEF⊥平面PAD;
(2)求三棱錐M-EFB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓的右焦點F到雙曲線x2-y2=1的一條漸近線的距離為$\frac{\sqrt{2}}{2}$,已知過點F斜率為k1直線l交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)設(shè)線段AB的中點為M,直線OM(其中O為原點)的斜率為k2,判斷k1•k2是否為定值,如果是,求出該值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),圓Q:(x-2)2+(y-$\sqrt{2}$)2=2的圓心Q在橢圓C上,點P(0,$\sqrt{2}$)到橢圓C的右焦點的距離為$\sqrt{6}$.
(1)求橢圓C的方程;
(2)過點P作互相垂直的兩條直線l1,l2,且l1交橢圓C于A,B兩點,直線l2交圓Q于C,D兩點,且M為CD的中點,求△MAB的面積的取值范圍.

查看答案和解析>>

同步練習冊答案