Sn為等差數(shù)列{an}的前n項(xiàng)和,a2+a6=6,則S7=
 
分析:由等差數(shù)列的定義和性質(zhì),求得a1+a7=a2+a6=6,由此求得S7 的值.
解答:解:∵等差數(shù)列{an}中,a2+a6=6,
∴a1+a7=6,
故 S7 =
(a1+a7)×7
2
=21,
故答案為:21.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的前n項(xiàng)和公式,求得a1+a7的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若S1=1,
S4
S2
=4
,則
S6
S4
的值為( 。
A、
9
4
B、
3
2
C、
5
4
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前項(xiàng)和,Sn=336,a2+a5+a8=6,an-4=30,(n≥5,n∈N*),則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9=
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1=1,a3=5,Sk+2-Sk=36,則k的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3+a5+a13=9,則S13=( 。

查看答案和解析>>

同步練習(xí)冊答案