2.若x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$,z=x-2y,則z的取值范圍是[-3,2].

分析 先作出不等式組表示的平面區(qū)域,由z=x-2y可得,y=$\frac{1}{2}$x-$\frac{1}{2}$z,則-$\frac{1}{2}$z表示直線x-2y-z=0在y軸上的截距,截距越大,z越小,結(jié)合函數(shù)的圖形可求z的最大與最小值,從而可求z的范圍

解答 解:作出不等式組表示的平面區(qū)域:
由z=x-2y可得,y=$\frac{1}{2}$x-$\frac{1}{2}$z,則-$\frac{1}{2}$z表示直線x-2y-z=0在y軸上的截距,截距越大,z越小
結(jié)合函數(shù)的圖形可知,當(dāng)直線x-2y-z=0平移到B時(shí),截距最大,z最;當(dāng)直線x-2y-z=0平移到A時(shí),截距最小,z最大
由$\left\{\begin{array}{l}{2x+y-4=0}\\{x-y+1=0}\end{array}\right.$可得B(1,2),由$\left\{\begin{array}{l}{x+2y-2=0}\\{2x+y-4=0}\end{array}\right.$,
可得A(2,0)
∴Zmax=2,Zmin=-3
則z=x-2y∈[-3,2]
故答案為:[-3,2].

點(diǎn)評(píng) 平面區(qū)域的范圍問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,S5=30,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=2n-1.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=(-1)n(anbn+lnSn),求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號(hào),則抽取的42人中,編號(hào)落入?yún)^(qū)間[61,140]的人數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2cosx(sinx-cosx)+m(m∈R),將y=f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位后得到y(tǒng)=g(x)的圖象,且y=g(x)在區(qū)間[0,$\frac{π}{4}$]內(nèi)的最大值為$\sqrt{2}$.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若g($\frac{3}{4}$B)=l,且a+c=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在隨機(jī)試驗(yàn)中,在區(qū)間[-2,3]內(nèi)任取一個(gè)實(shí)數(shù)x,則這個(gè)數(shù)小于1的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i為虛數(shù)單位,復(fù)數(shù)z1=1+i,z2=1-i,則$\frac{z_1}{z_2}$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.無窮等比數(shù)列{an}的首項(xiàng)為2,公比為$\frac{1}{3}$,則{an}的各項(xiàng)的和為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程y=bx+a的b為9.2,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為( 。
A.63.6萬B.65萬C.66.1萬D.67.7萬

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a1=1,a2=3,an=an-1-an-2(n≥3),則a2016=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案