分析 先作出不等式組表示的平面區(qū)域,由z=x-2y可得,y=$\frac{1}{2}$x-$\frac{1}{2}$z,則-$\frac{1}{2}$z表示直線x-2y-z=0在y軸上的截距,截距越大,z越小,結(jié)合函數(shù)的圖形可求z的最大與最小值,從而可求z的范圍
解答 解:作出不等式組表示的平面區(qū)域:
由z=x-2y可得,y=$\frac{1}{2}$x-$\frac{1}{2}$z,則-$\frac{1}{2}$z表示直線x-2y-z=0在y軸上的截距,截距越大,z越小
結(jié)合函數(shù)的圖形可知,當(dāng)直線x-2y-z=0平移到B時(shí),截距最大,z最;當(dāng)直線x-2y-z=0平移到A時(shí),截距最小,z最大
由$\left\{\begin{array}{l}{2x+y-4=0}\\{x-y+1=0}\end{array}\right.$可得B(1,2),由$\left\{\begin{array}{l}{x+2y-2=0}\\{2x+y-4=0}\end{array}\right.$,
可得A(2,0)
∴Zmax=2,Zmin=-3
則z=x-2y∈[-3,2]
故答案為:[-3,2].
點(diǎn)評(píng) 平面區(qū)域的范圍問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
廣告費(fèi)用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
A. | 63.6萬 | B. | 65萬 | C. | 66.1萬 | D. | 67.7萬 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com