14.無窮等比數(shù)列{an}的首項(xiàng)為2,公比為$\frac{1}{3}$,則{an}的各項(xiàng)的和為3.

分析 {an}的各項(xiàng)的和=$\frac{{a}_{1}}{1-q}$,即可得出.

解答 解:{an}的各項(xiàng)的和為:$\frac{{a}_{1}}{1-q}$=$\frac{2}{1-\frac{1}{3}}$=3.
故答案為:3.

點(diǎn)評 本題考查了等比數(shù)列的前n項(xiàng)和的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{(sinA-sinC)(a+c)}=sinA-sinB$,則角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中是真命題的是( 。
①“若x2+y2≠0,則x,y不全為零”的否命題;
②“正多邊形都相似”的逆命題;
③“若m>0,則x2+x-m=0有實(shí)根”的逆否命題;
④“?x∈R,x2+x+2≤0”的否定.
A.①②③④B.①③④C.②③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$,z=x-2y,則z的取值范圍是[-3,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知角α的終邊落在直線y=-2x上,則tanα=-2,$cos(2α+\frac{3}{2}π)$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.己知l1,l2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線,且右焦點(diǎn)關(guān)于l1的對稱點(diǎn)l2在上,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在空間直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,2,1),點(diǎn)B的坐標(biāo)為(-2,0,3),則線段AB的中點(diǎn)坐標(biāo)為( 。
A.(-1,1,2)B.(-2,2,4)C.(-1,-1,1)D.(1,-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l經(jīng)過點(diǎn)M0(1,5),傾斜角為$\frac{π}{3}$,且交直線x-y-2=0于M點(diǎn),則|MM0|=6$\sqrt{3}$+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個向量,已知$\overrightarrow{AB}$=2k$\overrightarrow{a}$+(k2-2)$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow$,若A、B、D三點(diǎn)共線,求k的值.

查看答案和解析>>

同步練習(xí)冊答案