17.向量$\overrightarrow a=({0,1}),\overrightarrow b=({-1,1})$,則$({3\overrightarrow a+2\overrightarrow b})•\overrightarrow b$=( 。
A.4B.5C.6D.7

分析 由條件利用兩個(gè)向量的數(shù)量積公式,兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,計(jì)算求得結(jié)果.

解答 解:∵向量$\overrightarrow a=({0,1}),\overrightarrow b=({-1,1})$,則$({3\overrightarrow a+2\overrightarrow b})•\overrightarrow b$=(-2,5)•(-1,1)
=2+5=7,
故選:D.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,若f(a)≤a,則實(shí)數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4=a2+a3+9a1,a5=32,則a1=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+2x,x≤0\\ ln(x+1),x>0\end{array}\right.$,若對(duì)x∈R都有|f(x)|≥ax,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0]B.[-2,0]C.[-2,1]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},則A∩B=( 。
A.{-1,0}B.{0,1,2}C.{-1,0,1}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若$|{\begin{array}{l}{2^x}&1\\ 3&{2^x}\end{array}}|=0$,則x的值是${log}_{2}\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求證:f(x)≥x-1;
(Ⅲ)若$f(x)≥a{x^2}+\frac{2}{a}(a≠0)$在區(qū)間(0,+∞)上恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)D從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿著CB向點(diǎn)B運(yùn)功,△ADE和△ADC關(guān)于AD成軸對(duì)稱,連接BE,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),△BDE是以BE為底的等腰三角形?
(2)當(dāng)t為何值時(shí),用BD,DE、AD的長(zhǎng)度作為線段所圍成的三角形是以BD為直角邊的直角三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=$\sqrt{2}$c,且A=C+$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求sinB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案