2.已知cosα=-$\frac{4}{5}$($\frac{π}{2}$<α<π),則cos($\frac{π}{4}$+α)=( 。
A.-$\frac{7\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

分析 依題意,利用同角三角函數(shù)間的關(guān)系式可求得sinα,再利用兩角差的余弦公式即可求得答案.

解答 解:∵cosα=-$\frac{4}{5}$($\frac{π}{2}$<α<π),
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(-\frac{4}{5})^{2}}=\frac{3}{5}$.
∴cos($\frac{π}{4}$+α)=$\frac{\sqrt{2}}{2}cosα-\frac{\sqrt{2}}{2}sinα$=$\frac{\sqrt{2}}{2}×(-\frac{4}{5}-\frac{3}{5})=-\frac{7\sqrt{2}}{10}$.
故選:A.

點(diǎn)評(píng) 本題考查兩角和與差的余弦函數(shù),考查同角三角函數(shù)間的關(guān)系式的應(yīng)用,考查運(yùn)算求解能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則$\frac{BD}{DA}$=( 。
A.$\frac{16}{9}$B.$\frac{25}{9}$C.$\frac{25}{16}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用數(shù)學(xué)歸納法證明:(1+α)n≥1+nα(其中α>-1,n是正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且A=3C,c=6,(2a-c)cosB-bcosC=0,則△ABC的面積是$18\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當(dāng)x∈(0,1)時(shí),f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各曲線的標(biāo)準(zhǔn)方程
(1)長軸長為12,離心率為$\frac{2}{3}$,焦點(diǎn)在x軸上的橢圓;
(2)過點(diǎn)A$(\frac{{\sqrt{6}}}{3},\sqrt{3})$和 B$(\frac{{2\sqrt{2}}}{3},1)$的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓C:x2+y2+2x-4y+1=0的圓心在直線ax-by+1=0上,則ab的取值范圍是( 。
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{8}$]C.(0,$\frac{1}{4}$]D.(0,$\frac{1}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若f(${x^{-\frac{2}{3}}}$)=${log_2}^x$則f($\frac{1}{2}$)的值等于=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{4}$]時(shí),求f(x)的最大值、最小值,及其取得最值時(shí)自變量的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案